基于应变信号时频分析与CNN网络的车辆荷载识别方法
Vehicle load identification method based on time frequency analysis of strain signal and CNN network
投稿时间:2021-01-26  修订日期:2021-09-14
DOI:
中文关键词:  CNN网络  时频分析  回归分析  车辆荷载识别  
英文关键词:CNN network  Time-frequency analysis  regression analysis  vehicle load identification  
基金项目:国家自然科学基金项目(51878264);湖南省交通厅科技进步与创新计划项目(201912);长沙市科技计划项目(kq11706019);
作者单位邮编
周云 湖南大学土木工程院 410006
赵瑜 湖南大学土木工程院 410006
郝官旺 湖南大学土木工程院 
方亮 湖南农业大学水利与土木工程学院 
摘要点击次数: 18
全文下载次数: 0
中文摘要:
      针对现有神经网络车辆荷载识别方法的识别精度不足且训练样本采集困难的问题,提出了一种基于应变信号时频分析与CNN网络的车辆荷载识别方法,对移动车辆总重进行荷载识别。首先,利用连续小波时频变换方法处理桥梁跨中应变信号,得到应变信号的时频特征,并利用双线性插值算法将时频信号矩阵变为大小为64×64的数值矩阵,作为CNN网络的输入数据。其次,利用CNN网络的回归学习算法,在训练少量数值矩阵后直接建立应变响应与车辆荷载的映射关系,从而实现对未知车辆荷载的识别。最后,通过模拟试验发现虽然在不同路面粗糙度和噪声影响下,CNN网络的荷载识别结果会受到不同程度的影响,但在一定范围内的路面粗糙度和噪声影响下仍然能较精确地识别车辆荷载。
英文摘要:
      Aiming at the problems of insufficient identification accuracy and difficulty in collecting training samples in vehicle load identification method based on neural network, a vehicle load identification method based on time-frequency analysis of strain signal and CNN network is proposed to identify the total weight of mobile vehicles. Firstly, the time-frequency characteristics of the strain signal are obtained by using the wavelet time-frequency transform, and the time-frequency matrix is changed into a 64×64 numerical matrix as the input data of CNN network. Secondly,in order to realize the purpose of unknown vehicle load identification,the mapping relationship between strain response and vehicle load is directly established after training a small number of numerical matrices, by using the regression learning algorithm of CNN network. Finally, through simulation tests, it is found that although the load recognition results of the CNN network will be affected to varying degrees under the influence of different road roughness and noise, the vehicle load can still be more accurately identified under the influence of certain road roughness and noise.
  查看/发表评论  下载PDF阅读器
关闭