基于点云数据与工程知识的桥梁形态变化识别方法
Change Detection of Geometrical Profile of Bridges Based on Point Cloud Data and Engineering Knowledge
投稿时间:2021-08-12  修订日期:2021-09-05
DOI:
中文关键词:  桥梁工程  形态变化  点云数据  工程知识  点云配准  三维激光扫描
英文关键词:bridge engineering  change of geometrical profile  point cloud data  engineering knowledge  point cloud registration  3D laser scanning
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位邮编
熊文 东南大学 211189
李刚 安徽省交通控股集团有限公司 
张宏伟 东南大学 
张立奎 安徽省交通控股集团有限公司 
操川 安徽省交通控股集团有限公司 
摘要点击次数: 17
全文下载次数: 0
中文摘要:
      为精准评估桥梁服役状态,通过定期多次三维激光数字建模,提出一种基于点云模型与工程知识的桥梁形态变化识别与跟踪方法。首先以传统ICP配准算法为基础,结合工程专业知识,仅依据优化的相对不动点集实现高效的点云分割与配准,进而针对新旧点云模型实施三维几何差异分析,从而完成桥梁形态变化的识别与验证。最后将该方法应用于实际工程,高精度识别出背景桥梁各关键构件一年内的形态变化,并利用工程知识对其进行验证。研究结果表明:所提出的基于工程知识的点云配准算法可高效实现三维点云间的精确配准;以此进行三维几何差异分析,可快速准确识别出桥梁构件在某一时期内的形态变化,例如主梁弯曲扭转以及桥墩偏移等。该方法可进一步提高桥梁非接触检测结果的科学性与精准性。
英文摘要:
      To evaluate the status of bridge operation precisely, according to the bridge 3D point cloud model obtained at different times, a change detection method of geometrical profile of bridges based on point cloud data and structure engineering knowledge is established. Firstly based on the traditional ICP registration, combined with engineering professional knowledge, a point cloud registration algorithm that only uses relatively fixed points to participate in the registration process is proposed. This algorithm is used as the main body to construct a bridge spatial deformation identification method including point cloud segmentation, registration, deformation identification and result verification. At last, the whole set of methods is applied to an engineering example to efficiently obtain the change of geometrical profile of each component of the bridge within one year, and the structural engineering knowledge is used to verify the reliability of the identification results. The results show that the proposed point cloud registration algorithm based on engineering knowledge can efficiently realize the precise registration of two point clouds. The change detection method of geometrical profile of bridges based on this algorithm can quickly and accurately identify the spatial deformation of bridge components (e.g. bending and torsion of girders and lateral bending of piers) in a period of time. This proposed method can provide more technical means and practical experience for the intelligent non-destructive testing of bridges.
  查看/发表评论  下载PDF阅读器
关闭