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Research on Shear Performance of Cantilever Beam with Variable—section

Corrugated Steel Web
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Abstract: To consider the difference in the section rotation angle of the wing flange, web, and composite box
girder when calculating the shear stress of a cantilever beam with variable section corrugated steel web, a
displacement function was first established based on the rotation angles of the flanges, web, and composite box
girder. The energy variational method was used to separate the shear contribution of the flange and web, and the
bending moment equivalent was used to further separate the top and bottom flange shear. Secondly, the shear—stress
solving program was established based on the stiffness matrix of the beam segment analysis element and the joint load

array of the composite box girder with variable section corrugated steel web. Lastly, the study analyzed the shear
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stress and shear capacity ratio of the top flange, bottom flange, and steel web of the cantilever beam under various

loading conditions. The results show that, when compared to the finite element calculation results, the accuracy of

the calculation results of the shear capacity ratio of the top flange, web, and bottom flange after considering the

difference of rotation angle can be improved by a maximum of 3.48%, 3.43%, and 6.91%, respectively, compared

with the existing results of shear stress calculation of variable cross—section. The shear capacity ratio of each

component of the cantilever beam depends on the load form. The values of the top flange and bottom flange reach the

maximum under the concentrated load of the beam free—end, which is 12.82% of the free end and 60.81% of the

fixed end, respectively, and the web shear capacity ratio reaches the maximum under the action of uniform load,

which is 78.11% of the free end.

Key words: shear stress ; energy variational method ; finite beam segment method ; shear capacity ratio
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Fig.1 Micro segment equilibrium diagram
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Fig .2 Composite box beam diagram
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Fig.3 Deformation mode diagram of corrugated steel web
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Fig.5 Shear diagram of box beam
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Fig.6 Diagram of equivalent bending moment
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TR
m 0 0 29.35 3.83 38.06 12.93 35.57 10.74
\Y 0 0 56.67 5.65 60.78 15.69 60.81 10.47

L 19~ 21 3% 1 KA SR A 2T A

1) o0 T T4 #0w A 5y eAR R, Ta0 I IV 4%
oA A BT T S T VAR, f ik
20 2 R By e T P 2K

2) Wi I FEBG I, TOUNR RS AR (1% 7K B L 35 i 3
DR R AR B4 A B L a2 i/ ) . v B rh e A E TR
T JRS A 45 B R BY LYk B 45 K, 4 S A i )
12.82% Fi1 [ 22 it 1 60.81% ; Y445 faf 4R VE R, B B
ST LR B K, H R Y 78.11%.

3) i AAE T, WA &Y e 520 (2) &5 R ek
ZAEATH T VIF a2 4 Y 3.48% , I8 A fe K 2%
EM TH0 T IR 8k 2 4k 3.43%, JEE M i K22 A
T T I F R 2 4k 6.91%. 454 47 FRITHLAL , A SC
THIR T 5 AT TOUAR 580 A R4 15 3.48% , AR I
NG P e K AR R 3.43%, IS M SRS B A KR
6.91%.

5 &g

AR SO F AR G LA S A A R R R A 25
B & SR S L AR T U T I B R T AR S A I
M 5 7 7 Ko Y L, S5 G 3R A B A R A R 458

1) 2R FH A5 A 1m0 59 107 3058 =X i Al A 7 Y
M KIR22IR 5 2.44 4% .

20) A T 0 T A AN Ak A [ v B A b
Uiy, TOUMR W A 7 B Lb 328 T K, IS AR B L i AP
/)N

3) 75 T I A I R A T A PR A A
AR EY L T B0 2 B AR th AT A E R, T
JIEMR A A 7K BT Ik B85, 43000 A i 9 12.82%
FIELE i 1) 60.81% ; HIATfar 284 E FH T, B AR K BT ik
Bk, R H Y 78.11%.

4) MR I R aT A K A ey 2 T THRR L Al
FIURE A A Y BT3RS B2 5 2248 1m0 3.48% .3.43% FI
6.91%.
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