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Abstract: Vehicle traveling can cause bridge vibration. As the span increases, bridge non-linearity increases
and vehicle-bridge interaction becomes more pronounced. In this paper, a 575m long—span concrete—filled steel

tubular arch bridge, Guangxi Pingnan Third Bridge, is taken as the study objective. Pulsation tests and accessibility
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field tests were carried out on it. Meanwhile, a refined vehicle=bridge coupling finite element model was established.
Vehicle=bridge coupling vibration response under different vehicle speeds and vehicle weights was analyzed to
explore its response law. Besides, the dynamic coefficient of control sections of the bridge is also calculated and
compared with that calculated by the current code to discuss the applicability of the current code to this bridge. The
results show that the numerical results are in good agreement with the results of the field pulsation tests, and the
trend of the dynamic strain time course curve under different conditions is basically the same as that of the field tests.
There is no significant relationship between the dynamic response of the bridge and the vehicle speed within the
speed range of 20 km/h to 60 km/h. When the vehicle exceeds 60 km/h, the deflection increases sharply with the
speed. The increase in vehicle weight leads to an increase in the maximum dynamic deflection of the bridge and a
decrease in the impact coefficient, but the actual total response of the bridge does not decrease. Therefore, the speed

and weight of the vehicles crossing the bridge should be strictly controlled to effectively reduce the impact effect of

the traffic load on the bridge.

Key words: vehicle—bridge coupling response ; long—span concrete—filled steel tube arch bridge; field test; re-

fined finite element ;impact coefficient
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Fig.3 Layout of the measurement points(“®” are pickups, unit: cm)
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Fig.4 Photo of the on—site installation of vibration pickup
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Fig.6 Arrangement of dynamic strain measurement points at the
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L/2 arch rib sections (“2” are pickups, unit: cm)
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Fig.7 Finite element model of a long—span

concrete—filled steel tube arch bridge
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Fig.8 Measuring vertical vibration transmissibility spectrum
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Tab.1 Comparison of the first two orders of
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Fig.9 Comparison of measured 1st order vertical bending

vibration pattern with theoretical values
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Fig.10 Comparison of measured 2nd order torsional

vibrations pattern with theoretical values
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Fig.12 Finite element model of vehicle
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Fig. 16 Vehicle—bridge coupled finite element model
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Fig.19 Dynamic deflection time history curves of different

vehicle speeds in the mid—span of the bridge deck
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Fig.21 Dynamic deflection time history curves of different
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