+高级检索
基于加点多目标粒子群算法的 碳纤维防撞梁优化设计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Optimization Design of Carbon Fiber Anti-collision Beam Based on Multi-objective Particle Swarm with Additional Points
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了达到车辆轻量化的效果,基于某轻型乘用车钢制防撞梁,根据车辆低速碰撞 标准对采用碳纤维材料的防撞梁进行结构优化设计 . 通过全因子试验确定防撞梁的截面参 数,考虑到各铺层区域之间厚度不同导致的材料不连续问题,提出了基于铺层相容性的铺层 原则,并以此确定防撞梁的厚度空间和对应的铺层顺序 . 在对防撞梁的铺层厚度进行优化设 计时,采用基于 kriging模型的加点多目标粒子群优化算法,在传统粒子群算法的基础上引入 多目标加点策略,能够有效解决由于近似模型精度不够导致的重复试验设计,提高了优化效 率. 优化设计后的仿真和台车试验表明,碳纤维防撞梁低速碰撞性能满足要求.

    Abstract:

    In order to achieve the effect of vehicle lightweight, based on the steel anti-collision beam of a light passenger car, the structure optimization design of the anti-collision beam made of carbon fiber was carried out ac? cording to the low-speed collision standard. Firstly, the cross-section parameters of the anti-collision beam are deter? mined by the full factor test. Considering the material discontinuity caused by different thicknesses of each area, the ply principle based on ply compatibility is proposed, and the thickness space of the anti-collision beam and the corre? sponding ply sequence are determined. In order to optimize the thickness of the anti-collision beam, the multiobjective particle swarm optimization algorithm based on the kriging model is adopted. Based on the traditional par? ticle swarm optimization algorithm, the multi-objective adding point strategy is introduced, which can effectively solve the repeated test design problem caused by the insufficient accuracy of the approximate model, and improve the optimization efficiency. The simulation and sled test of the optimized anti-collision beam show that the low-speed im? pact performance of the carbon fiber anti-collision beam meets the requirements.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

陈静 ,崔晓凡 ,郑晋军 ,徐森 ,胡金旭.基于加点多目标粒子群算法的 碳纤维防撞梁优化设计[J].湖南大学学报:自然科学版,2022,49(8):21~28

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-07
  • 出版日期:
版权声明:稿件一经被本刊录用,即视为作者将版权授予本刊,本刊有权根据工作需要,允许合作的数据库、新媒体平台及其他媒体进行二次转载、推介、下载和传播,如有异议,请在来稿中声明。
关闭