文章编号:1674-2974(2017)06-0133-08

DOI:10.16339/j.cnki.hdxbzkb.2017.06.022

南方某省土壤背景点的环境质量研究

刘云国¹,彭庆庆^{1,2,3†},杨朝晖¹,罗岳平^{2,3},毕军平^{2,3},胡树林^{2,3} (1.湖南大学环境科学与工程学院,湖南长沙410082;2.湖南省环境监测中心站,湖南长沙410019; 3.国家环境保护重金属污染监测重点实验室,湖南长沙410019)

摘 要:为了详细了解南方某省的土壤背景值,在该省共布设468个背景点.通过采集 样品和实验室分析,对这些背景点的污染情况进行全面评估.本文首先针对该省不同土地利 用类型分析了土壤表层的无机元素和有机污染物水平,对比了不同剖面层次上污染物分布 特征,然后对土壤背景环境质量进行了评价.最后将"七五"背景值数据与本次调查数据进行 成对数据 t 检验,得出水田和旱地背景点土壤环境质量基本保持稳定,林地的大部分无机污 染物含量有所下降.本文结论对于制定该省土壤环境指标、预测土壤污染趋势,正确评价土 壤环境质量有重要作用.

关键词:背景点;土壤剖面;无机元素;有机污染物;环境评价
 中图分类号:X131.3
 文献标志码:A

Research on Environmental Quality of Soil Background Points in a Southern Province

LIU Yunguo¹, PENG Qingqing^{1,2,3†}, YANG Zhaohui¹, LUO Yueping^{2,3}, BI Junping^{2,3}, HU Shulin^{2,3}

(1.College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;2.Hunan Environmental Monitoring Center, Changsha 410019, China;

3. State Environment Protection Key Laboratory of Heavy Metal Pollution Monitoring, Changsha 410019, China)

Abstract: To understand the soil background situation of a typical southern province, 468 background points were established. Through sample collection and experimental analysis, the pollution situation of these background points was comprehensively investigated. At first, this study analyzed the inorganic elements and organic pollutants of different soil utilization types in this province, compared the pollutants distribution characteristics of different profiles, and then evaluated the soil environmental quality of background points. Finally, through t-test of the "7th Five-year Period" background data and the investigation data in this study, it is concluded that environment quality of paddy fields and dry land solid keeps stable and the inorganic pollutant content in forestry solid mostly declines.

Key words: background point; soil profile; inorganic elements; organic pollutants; environmental assessment

土壤环境状况不仅直接影响到国民经济发展, 而且直接关系到农产品安全和人体健康.土壤背景 值是在一定区域内土壤中各种化学元素或化学组 成的背景含量、分布类型及变异规律.土壤呈地带性

^{*} 收稿日期:2016-08-29

基金项目:国家自然科学基金资助项目(41271332,51521006), National Natural Science Foundation of China(41271332,51521006) 作者简介:刘云国(1955—), 明, 湖南常德人, 湖南大学教授, 博士生导师 †通讯联系人, E-mail: 75593934@qq.com

规律分布^[1],不同区域、地带、元素在土壤中的淋溶、 迁移、积累等地球化学行为不同,导致不同区域之 间土壤中各种元素的背景含量和分布规律也存在 明显差异.调查研究元素和化学组成的区域背景含 量对评价土壤的污染范围、程度,制定土壤环境指 标,预测土壤污染趋势,正确评价土壤环境质量有 重要作用^[2-3].

为全面调查南方某省的土壤背景值,我们在该 省系统性地布设背景调查点,采集剖面土壤样品 后,对样品进行实验室分析.调查省具有典型的中国 南方自然环境和地质特征,按照土地利用方式分 类,其土壤可分为耕地(水田、旱地)、林地、草地和 未利用地等类型.由于未利用地零星分散,达不到采 样布点的要求;草地虽可布点,但点位太少,故将草 地和未利用地均归并到林地中进行统计与评价.因 此,该省不同利用类型土壤环境质量只分耕地和林 地2大类来进行分析和评价,且其耕地以水田为主, 水田约占耕地面积的 2/3.

目前的土壤环境质量研究主要聚焦于表层土 壤的重金属污染^[4]或有机物污染^[5].针对土壤污染 单一调查评价不足且在空间和时间上分析不充分 的问题,本文对比南方某省整个区域的不同土地利 用类型和不同土壤剖面的环境质量,同时通过本次 调查背景值数据与"七五"数据进行 t 检验说明污染 物的变化特征,全面深入研究该省的土壤污染状况. 根据《全国土壤污染状况调查样品分析测试技术规 定》本文确定了无机和有机污染物监测分析指标, 如表1中分析指标栏所示,包括13种无机物全量、 以及有机物包括六六六总量、滴滴涕总量、16种优 控多环芳烃单体作为重点污染物^[6].

针对无机元素方面,本文采用火焰原子吸收分 光光度法等^[7-10]多种方法测定 13 种无机元素;对 多环 芳 烃 的 分 析 测 试 使 用 高 效 液 相 色 谱 法 (HPLC)^[11],有 机 氯 农 药 采 用 气 相 色 谱 法 (GC-ECD)^[12],具体土壤样品分析方法参照表 1.国内外 现常用的土壤环境质量评价方法主要包括:单因子 指数评价法、内梅罗综合污染指数法、模糊贴近度 法、地累积指数评价法^[13]、潜在生态危害指数法^[14] 等.由于单因子污染指数法物理意义明确,计算过程 简单,本文采用该方法评价土壤背景点环境质量.

1 实验方法

1.1 背景点位布设

调查点位的布设采用网格划分的方法,划分使

用 GIS 系统数据进行网络布点,对于耕地(包括水田和旱地)采用 8×8 平方公里网格,对于林地采用 16×16 平方公里网格.计算每个网格不同土地类型的面积比例,水田、旱地、林地面积大于 50%的网格分别作为各自土地类型调查监测的网格,在网格中心点布点.本次调查全省共采集了 468 个土壤背景点.

1.2 土壤剖面样品采集

根据"七五"土壤背景调查的原始记录,在保证 与原记录经纬度、土壤母质母岩、土壤类型、土壤利 用类型基本一致的情况下,选择未受人为干扰、无 明显局部污染,具备明显土壤发育特征;小地形较 平坦,地表植物生长完好的自然土壤;土壤剖面发 育完整,层次清晰,无外来侵入体的点位,设置剖面.

剖面的规格一般为长 1.5 m,宽 0.8 m,深 1.2 m,观察面向阳,表土和底土分两侧放置.一般每个 剖面采集 A,B,C 三层土样.地下水位较高时,剖面 挖至地下水出露时为止;山地丘陵土层较薄时,剖 面挖至风化层.对 B 层发育不完整(不发育)的山地 土壤,只采 A,C 两层.水稻土按 A 耕作层、B 犁底 层、C 母质层(或 G 潜育层、W 潴育层)分层采样.对 A 层特别深厚,沉积层不甚发育,一米内见不到母 质的土类剖面,按 A 层 0~20 cm,B 层 20~60 cm, C 层 60~120 cm 采集土壤.草甸土和潮土一般在 A 层 0~20 cm,B 层 20~60 cm,C 层 60~120 cm 处 采样.

采样次序自下而上,第一步采集容重样品,使 用 200 ml 的环刀采集;第二步采剖面的有机样品, 分别装入 250 ml 的广口棕色玻璃瓶中带回;第三步 采集无机分析样品,测量重金属的无机样品使用竹 片或竹刀去除与金属采样器接触的部分土壤,再用 竹刀取样,避免金属工具污染土壤.每层样品采集 5 kg左右.

1.3 土壤样品制备

土壤样品制备在无阳光直射、通风良好、整洁、 无尘、无易挥发性化学物质的风干室和磨样室内 完成.

先在风干室将土样放置于风干盘中,摊成2~3 cm的薄层,适时压碎、翻动,拣出碎石、砂砾、植物 残体等.

在磨样室将风干的样品倒在有机玻璃板上,用 木锤敲打,用木滚、木棒、有机玻璃棒再次压碎,拣 出杂质,混匀,并用四分法取压碎样,过孔径10目尼 龙筛.过筛后的样品全部置无色聚乙烯薄膜上,并充 分搅拌混匀,再采用四分法取其四份,两份存放到 样品库,另一份作样品的细磨用.用于细磨的样品再 研磨到全部过孔径 20 目筛,然后继续研磨到全部过 孔径 0.15 mm(100 目)筛.

1.4 土壤样品分析

土壤样品的分析测试项目、分析方法、检出限 及样品的前处理方法等详见表 1.

Tab.1 Analysis index, method and detection limit of solid samples								
项目类型	分析指标	分析方法	检出限/(mg.kg ⁻¹)	样品前处理方法				
	Cu	火焰原子吸	1.0					
	Zn	收分光光	0.5					
	Pb	度法	1.0					
		石墨炉原子						
	Cd	吸收分光光	0.005	HCI-HNO3-HF-HCIO4,电 然极				
		度法						
	Mn	火焰原子吸	2.5	_				
土壤样品	Ni	收分光光	2.5	_				
无机项目	Cr	度法	0.5	HCl-HNO3-HF-H2SO4,电热板				
(全量)	As	原子荧光	0.01	エル(1・1) 準水浴 1 トル浴炉				
	Se	光度法	0.01	- 王永(1·1)佛水冶1n,水冶钠				
	Ца	冷原子吸收	0.001	HNOH-SOV-O- 由执板				
	IIg	分光光度法	0.001	11.03 112004 V205, EXA				
	V *	电感耦合等离子	2.5	- HCl-HNOs-HE-HClO, 由执板				
	Co *	发射光谱法	2.5					
	F^-	离子选择	5	用 NaOH 熔融,热水浸取、适量盐酸、马福炉				
		电极法						
	萘(NaP)		0.014					
	苊烯(Acy)		0.021					
	苊(Ace)		0.036					
	芴(Flo)		0.0029					
	菲(Phe)		0.00078					
土壤	蔥(Ant)		0.00014	CH ₂ Cl ₂ 丙酮(1:1)快速溶剂				
多环	荧蒽(Fla)	液相色谱法(HPLC)	0.0016	萃取硅胶柱,净化浓缩				
芳烃	芘(Pyr)		0.0049					
	苯并[α]蒽(BaA)		0.0019					
	屈(Chr)		0.0019					
Ż	ķ并[b]荧蒽(BbF)		0.0018					
苯	€并[k] 荧蔥(BkF)		0.0023					
苯并[α]芘(BaP)			0.0026					
二苯并[a,h]蒽(DahA)			0.011					
苯并[g,h,i]芘(BghiP)			0.0081					
茚并[1.2.			0.0004					
	B-cd]芘(Icdp)		0.0034					
+#64*	六六六(HCH)	日期な難味いののもので	$0.221/(\mu g.kg^{-1})$	H ₂ Cl ₂ 丙酮(1:1)快速溶剂				
11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	DDT	飞相巴请法(GC-ECD)	$7.42/(\mu g.kg^{-1})$	萃取氟罗里硅柱,净化浓缩				

表 1 土壤样品的分析测试项目、方法及检出限

2 结果与讨论

2.1 不同土地利用类型剖面 A 层土壤的环境质量

剖面 A 层土壤与环境最直接相关,反映了背景 点的污染水平,优先对其环境质量进行评价.鉴于不 同土地类型的背景点具有不同的污染物特征,分水 田、旱地和林地三种不同土地利用类型分析背景点 剖面 中 A 层 无 机 元 素 和 有 机 污 染 物 的 浓 度 水平^[15-16].

背景点水田、旱地和林地的 A 层土壤中无机元素的监测结果详见表 2.从表中可看出,背景点 A 层

土壤中各元素监测数据的均值都远低于土壤环境 质量评价标准值.

水田背景点 A 层土壤中 V 元素呈正态分布, Cu,F,Mn,Ni,Pb 等呈对数正态分布,而 As,Cd, Co,Cr,Hg,Se,Zn 等呈偏态分布;旱地背景点 A 层 土壤中 Co 和 V 元素的监测数据呈正态分布,Cr, Cu,F,Mn,Ni 等元素呈对数正态分布,而 As,Cd, Hg,Pb,Se,Zn 等元素的监测结果呈偏态分布;林地 背景点 A 层土壤中 Cu,Mn 和 Pb 的监测数据呈对 数正态分布,而 As,Cd,Co,Cr,F,Hg,Ni,Se,V 和 Zn 的监测数据呈偏态分布.

	表 2 剖面 A 层土壤中无机元素的监测结果(mg/kg)
Tab.2	Inorganic elements measurement results of solid profile A(mg/kg)

	水田土壤		<u> </u>	旱地土壤		林地土壤
监测指怀	平均值	含量变化范围	平均值	含量变化范围	平均值	含量变化范围
As	15.50	1.28-69.55	16.36	4.73-74.47	16.07	0.88-99.71
Cd	0.217	0.010-1.41	0.218	0.010-0.66	0.164	0.003-1.014
Co	16.4	2.9-42.5	16.1	1.3-30.0	13.8	1.3-62.6
Cr	63.3	3.0-195.3	64.7	30.3-133.0	63.1	4.0-205.3
Cu	27	9 - 90	31	14 - 76	28	5 - 109
F	566	164 - 1340	613	183 - 1404	567	17 - 1862
Hg	0.127	0.017 - 0.56	0.104	0.014-0.51	0.113	0.001-1.320
Mn	425.7	52.1-2625.0	567.7	93.0-1408.4	465.8	36.1-2507.0
Ni	30.8	7.1-84.6	35.0	9.2-102.1	29.8	3.4-221.9
Pb	36.4	10.0-95.0	31.8	12.0-97.0	33.2	6.0-138.0
Se	0.31	0.05-1.03	0.25	0.01-0.86	0.35	0.01-1.87
V	85.7	27.0-153.9	89.3	39.9-158.5	92.6	16.0-342.0
Zn	87.9	11.8-231.0	93.6	41.6-238.2	92.9	14.4-298.0

总体来看,旱地的无机污染物浓度相对较高, 而林地的无机污染物浓度相对较低,但不同土壤类 型之间的差别并不是很明显.

背景点剖面 A 层土壤中有机污染物六六六总 量和 DDT 总量的监测结果详见表 3.从中可以看 出,水田背景类土壤中六六六总量的均值明显高于 旱地和林地土壤中六六六总量的均值,而旱地土壤 中 DDT 总量的均值明显高于水田和林地土壤中 DDT 总量的均值.与本次调查获得的背景点土壤多 环芳烃类有机污染物指标的均值相比,水田土壤中 萘、菲、荧蒽、苯并(a)蒽、屈和苯并(b)芘的均值明显 偏高,而萘明显低于均值水平;旱地土壤中屈的均 值明显偏高,而萘、菲、荧蒽、苯并(b)芘明显低于均 值水平;林地土壤中蒽的均值明显偏高,而萘、菲、 荧蒽、屈、苯并(b)芘的均值明显低于均值水平;其 他有机污染物的均值则无明显差异.

表 3 剖面 A 层土壤中有机污染物的监测结果(μg/kg) Tab.3 Organic pollutants measurement results of solid profile A(μg/kg)

	14.5.0	organie ponutants i	incusur cinente i	courts of some prom	····(P6/ 16/		
미산 20년 년간 분드		水田土壤	旱地土壤		林地土壤		
监测指怀	平均值	含量变化范围	平均值	含量变化范围	平均值	含量变化范围	
六六六总量	41.274	0.111-614.230	10.328	0.111-63.347	15.707	0.111-343.492	
滴滴涕总量	29.72	3.71-401.97	59.05	3.71-1066.85	29.79	3.71-914.40	
萘	85	7 - 542	72	7 - 663	73	7 - 1250	
苊	41	18 - 682	47	18 - 617	50	18 - 1040	
二氢苊	39	11-430	43	11 - 752	30	11-778	
芴	15.4	1.5 - 141.0	7.3	1.5 - 48.5	15.1	1.5 - 321.0	
菲	31.6	0.39-110.0	22.8	0.39-252	25.6	0.39-323.0	

续表3						
	水田土壤		旱地土壤		林地土壤	
监测指标	平均值	含量变化范围	平均值	含量变化范围	平均值	含量变化范围
蒽	5.4	0.07-90.2	8.52	0.07-185	5.80	0.07-114.0
荧蒽	60.6	0.8-656.0	38.1	0.8-645.0	26.5	0.8-268.0
芘	29.8	2.5-252.0	18.9	2.5-161.0	24.0	2.5-578.0
苯并(a)蒽	36.8	1.0-556.0	9.1	1.0 - 54.5	10.5	1.0-173.0
屈	78.1	1.0-1640.0	41.4	1.0-368.0	25.8	1.0-508.0
苯并(b)芘	23.4	0.9-160.0	21.3	0.9-320.0	10.0	0.9-136.0
苯并(k)芘	9.1	1.2-104.0	10.4	1.2-129.0	6.2	1.2-105.0
苯并(a)芘	14.0	1.3-175.0	8.0	1.3-67.0	4.6	1.3-100.0
茚并(1,2,3-cd)芘	6.2	1.7-47.0	8.6	1.7-279.0	3.1	1.7-100.0
二苯并(a,h)蒽	19	6 - 673	11	6 - 63	8	6-118
苯并(σ.h.i)芘	24 9	4.1 - 617.0	27.6	4 1-951 0	7 5	41 - 2920

2.2 土壤剖面各层次污染物的分布特征

为了分析污染物在背景点不同剖面层次的分 布特征,分别对 A/B/C 三层的无机和有机污染物含 量进行对比^[17].无机污染物分为全省、水田、旱地和 林地4类进行剖面对比,如图1和图2所示,其中全 省为全省所有采样点的算术平均值.背景点剖面土 壤不同层次的 Cd,Hg 和 Se 的变化比较明显,表现 为A 层明显积累,尤其是 Cd 在 A 层的含量水平分 别是 B 层和 C 层的 1.37,1.33 倍.Mn 则表现为明显 的淋洗特征,A 层的含量水平明显低于 B 层和 C 层,仅为 B 层和 C 层的 0.87,0.89 倍.背景点剖面土 壤中 As,Co,Cr,Cu,F,Ni,V 在 A 层的含量水平略 低于 B 层和 C 层,而 Pb,Zn 在 A 层的含量水平略 高于 B 层和 C 层.同时可以得出,背景点土壤剖面 B 层和 C 层的无机污染物的水平基本相当.

根据图 1 和图 2,水田类背景点土壤中 As,Cd, Cu,Hg,Pb,Se,Zn 等7种元素的 A/B 和 A/C 比值 都超过1,尤其是Cd,Hg,Se和Pb的A/B比值分 别达到 1.57, 1.43, 1.19, 1.13, A/C 比值依次为 1. 80,1.71,1.41,1.13,表明水田土壤中的 Cd, Hg, Pb 和 Se 等元素的污染主要是地表输入来源;旱地类背 景点土壤中 Cd, Cr, Pb 和 Zn 等 4 种元素的 A/B 和 A/C 均大于或等于 1, 尤其 Cd 和 Se 的 A/B 比值分 别为 1.39,1.05, A/C 比值分别为 1.33、1.40, 表明这 两种元素受到外来污染所致;林地类背景点土壤中 Cd,Hg,Se和Zn元素A/B和A/C比值都超过1, 尤其 Cd 和 Se 的 A/B 比值分别达到 1.22,1.17, A/ C比值依次为 1.25, 1.27. 另一方面, 不同土地利用 类型的 B 层和 C 层相比, 无机污染物水平基本相 当,但是水田的Cd,Hg和Se,旱地的Cu和Se,B层 含量高出 C 层 10%~30%,相对比较明显.

总体来看,Cd,Hg,Pb,Se和 Zn 在背景点土壤

图 1 土壤剖面 A 层与 B 层无机污染物含量对比图 Fig.1 Inorganic pollutants content comparison of solid profile A and B

表层含量比亚层和底层含量要高,表明上述元素具 有地表输入下污染特征,受人类排放源的影响,是 需要治理的对象.

背景点主剖面土壤中有机污染物不同层次的 含量的对比如图 3 所示.从图中可以看出,相对于无 机污染物,有机污染物的含量在剖面各个层次之间 的差别比较大.B 层土壤中的屈、苯并(a)芘、苯并 (b)芘、苯并(g,h,i)芘含量较 A 层明显偏低,差别 程度为苯并(b) 芘>屈>苯并(g,h,i) 芘>苯并(a) 芘,其它单体的含量则基本与A层持平.C层土壤中 的六六六总量、滴滴涕总量、二氢苊、苯并(a) 蒽、苯 并(k) 芘、苯并(a) 芘、苯并(1,2,3-cd) 芘、苯并(g,h, i) 芘含量明显低于A层,其中差别程度最大的为苯 并(a) 芘、苯并(g,h,i) 芘和苯并(k) 芘, 而萘、苊在C 层的含量明显高于A层.

B 层与 C 层相比,有机污染物含量总体相当,但 六六六总量、滴滴涕总量、苯并(a) 芘比 B 层比 C 层 高出超过 2 倍,而对于萘、蒽、屈和苯并(b) 芘 C 层 比 B 层高出超过 2 倍.

3 土壤背景环境质量评价

监测结果表明,背景点剖面土壤的污染受到层次的影响较大,而受到土地利用类型的影响相对较小.应从不同剖面层次出发对土壤背景点的环境质量进行评价,以客观反映真实污染水平^[18-19].

对土壤环境质量评价通常采用单因子污染指数法,其计算公式为:

$$P_{ip} = \frac{C_i}{S_{ip}}$$

其中, P_{ip} 为土壤中污染物i的单项污染指数; C_i 为调查点位土壤中污染物i的实测浓度;

 S_{ip} 为污染物i的评价标准值或参考值.

根据 P_{ip} 的大小,可将土壤污染程度划分为五级,即无污染($P_{ip} \leq 1$)、轻微($1 < P_{ip} \leq 2$)、轻度($2 < P_{ip} \leq 3$)、中度($3 < P_{ip} \leq 5$)和重度($P_{ip} > 5$).

根据单项污染指数(*P_{ip}*)评价结果(图 4),背景 点土壤剖面中无机元素的单因子检验结果基本相 似,层次变化特征不明显.总体上,超标率呈现 A 剖 面<B 剖面<C 剖面的趋势.超标比较严重的元素 包括 As,Cd,Ni 和 V,而 Cu,Hg,Mn,Pb,Se 和 Zn 的超标率较低,Co 和 Cr 只有少量的轻微污染.

图 4 背景点土壤中无机元素单项污染指数(P_{ip})评价

Fig.4 Inorganic pollutants single pollution $index(P_{ip})$ assessment of background points solid

有机污染物的单项污染指数(Pip)评价结果如图5所示.从图中可以看出,背景点A层土壤中只有六六六总量、滴滴涕总量、苯并(a)芘、二苯并(a,h) 菌分别有4.27%,8.12%,1.07%和1.5%的样品中 存在轻度污染,而其他有机污染物均处于无污染 水平.

从图 4 和图 5 可以进一步看出,背景点土壤中 As,Cd,V和 DDT 总量的单因子指数 90%以上,其 他无机元素和有机污染物的单因子指数 95%以上 都分布在无污染或轻微污染范围内.表明背景点土 壤受到外界环境污染程度很低,背景点位的设置比 较科学、合理,具有代表性.

4 土壤背景环境质量变化趋势分析

为掌握所调查土壤背景点环境质量的变化趋势,采用成对数据 t 检验的方法分析"七五"到本次调查各个背景点的污染物变化情况.由于"七五"期间为开展有机物的调查,对比工作关注于无机物的变化趋势.

我们首先根据历史数据重新整理得到"七五" 期间各土壤背景值调查结果,As,Cd,Co,Cr,Cu,F,

图 5 背景点土壤中有机物单项污染指数(P_{ip})评价 Fig.5 Organic pollutants single pollution index(P_{ip}) assessment of background points solid

Hg, Mn, Ni, Pb, Se, V, Zn 的浓度分布范围依次为 0 ~96.48, 0.002~3.0, 1.0~70, 8.0~348, 3~118, 102~2100, 0.002~0.836, 48~5800, 1.0~131.0, 6.0~119.0,0.01~3.30,20.4~282.2,20.8~320 mg/kg.

依据《全国土壤污染状况调查评价技术规定》 (试行)的规定,通过对"七五"背景值数据与本次调 查数据进行成对数据 t 检验^[20].结果详见表 4.

从表4可以看出,背景点水田土壤A,B,C三层中As,Cd,Cr,Cu,Hg,Mn,Ni的含量都无显著性变化,在土壤不同剖面层中含量都比较稳定;F在剖面A层和B层都无显著性变化,而在C层有显著性上升;Co在A层和B层显著性上升,而在C层无显著性变化;Pb在A层有显著性上升而V在A层有显著性下降,表明Pb和V在A层受到外界环境的剧烈影响;Se在A层无显著性变化,而Zn在A,B,C三个剖面层中均显著性下降,说明背景点土壤中Zn淋出作用强烈.

表 4	背景点土壤 坏境质量 成对数据 t 检验结果(t/t₀/检验结论)	

Tab.4	Pairwise data t-test	results of background	soil environmental	quality(t/t_0 /test res	sult)
-------	----------------------	-----------------------	--------------------	----------------------------	-------

监测		水田			旱地			林地		
项目	A	В	С	А	В	С	А	В	С	
As	1.25/1.99/→	-0.92/1.99/→	-0.72/2.00/→	0.65/2.00/→	0.08/2.00/→	-1.07/2.03/→	-3.15/1.97/↓	-2.51/1.97/↓	-2.14/1.97/↓	
Cd	1.06/1.99/→	-0.36/1.99/	-0.50/2.00/	2.92/2.00/ 1	0.26/2.00/→	0.37/2.03/→	8.50/1.97/ 1	6.93/1.97/ 🕇	2.75/1.97/ 1	
Со	3.42/1.99/ 1	2.95/1.99/ 1	1.20/2.00/→	0.88/2.00/→	1.06/2.00/→	0.03/2.03/→	$-0.68/1.97/ \rightarrow$	-1.29/1.97/	-0.74/1.97/→	
Cr	-0.82/1.99/→	-0.49/1.99/	1.51/2.00/→	-0.93/2.00/→	-0.71/2.00/→	$-0.11/2.03/ \rightarrow$	-3.64/1.97/↓	-4.10/1.97/↓	-3.25/1.97/↓	
Cu	-1.09/1.99/→	$-1.36/1.99/ \rightarrow$	-0.20/2.00/	0.62/2.00/→	-0.74/2.00/→	-1.03/2.03/→	$-0.79/1.97/ \rightarrow$	-2.25/1.97/↓	-0.71/1.97/→	
F	-1.74/1.99/→	0.57/2.78/→	6.90/4.30/ 1	-0.99/2.00/→	-1.80/2.45/→	<i>−</i> 1.73/2.78/→	-3.45/1.97/↓	-0.70/2.00/→	-1.02/2.02/→	
Hg	-0.01/1.99/→	$-0.76/1.99/ \rightarrow$	$-0.13/2.00/ \rightarrow$	$-0.19/2.00/ \rightarrow$	-1.08/2.00/	0.80/2.03/→	$-2.65/1.97/\downarrow$	-2.90/1.97/↓	-3.46/1.97/↓	
Mn	-0.45/1.99/	-1.73/1.99/ ightarrow	-1.74/2.00/ ightarrow	0.60/2.00/→	0.04/2.00/→	-0.50/2.03/	$1.67/1.97/ \rightarrow$	$1.66/1.97/ \rightarrow$	1.78/1.97/→	
Ni	-0.24/1.99/→	-0.43/1.99/	-0.60/2.00/	-1.09/2.00/→	-0.92/2.00/→	$-0.25/2.03/ \rightarrow$	-3.57/1.97/↓	-3.66/1.97/↓	$-2.79/1.97/\downarrow$	
Pb	2.30/1.99/ 1	0.51/1.99/→	1.14/2.00/→	1.30/2.00/→	1.00/2.00/→	0.73/2.03/→	4.68/1.97/ 1	4.56/1.97/ 1	3.13/1.97/ 🕇	
Se	1.98/1.99/→			0.03/2.00/→			$-1.21/1.97/ \rightarrow$	-3.28/2.36/↓	-1.09/3.18/→	
V	$-3.96/1.99/ m \downarrow$	-0.73/2.78/→	$-0.75/4.30/\rightarrow$	-3.34/2.00/↓	-0.65/2.45/	0.18/2.78/→	-7.04/1.97/↓	-2.46/1.99/↓	-0.35/2.02/→	
Zn	-2.29/1.99/↓	-2.07/1.99/ i	$-4.16/2.00/\oint$	-0.23/2.00/→	-0.38/2.00/→	-0.75/2.03/→	-0.73/1.97/→	-2.60/1.97/↓	-2.53/1.97/↓	

注:→代表无显著变化, ↑代表上升, ↓代表下降

背景点旱地土壤 A,B,C 三层中 As,Co,Cr, Cu,F,Hg,Mn,Ni,Pb 均无显著性变化;Se 在 A 层 无显著性变化;Cd 在 A 层呈显著性上升而 A 层中 V呈显著性下降,与受到了淋洗或其他外来因素的 作用有关.背景点旱地土壤中监测指标含量比较稳 定,几乎没有发生显著性变化.

背景点林地土壤 A,B,C 三层中 Cd 和 Pb 显著 性上升,Co 和 Mn 均无显著性变化,而 As,Cr,Hg, Ni 显著性下降,表明 Cd 和 Pb 在各层中都受到外来 因素的干扰,而其他元素主要是受自然环境雨水的 淋洗作用而有所下降.

5 结 论

调查的背景点不同土壤类型中,旱地的无机污 染物浓度相对较高,水田次之,而林地相对较低,但 不同土壤类型之间的差别并不明显.对有机污染物 指标而言,不同土地利用类型的浓度各有高低,但 水田中指标偏高的居多.

在背景点土壤不同剖面层次,无机元素和有机 污染物浓度多表现为剖面 A 层>B 层>C 层,表明 背景点也容易受到外来污染物的影响,但不同剖面 之间差别明显,表明各元素具有地表输入下污染特 征,受人类排放源的影响. 通过单因子污染指数法的土壤环境质量评估 本文得出,背景点土壤中 As,Cd,V和 DDT 总量的 单因子指数 90%以上,其他无机元素和有机污染物 的单因子指数 95%以上都分布在无污染或轻微污 染范围内,表明背景点土壤受到外界环境污染程度 很低.

通过成对数据 t 检验的方法分析"七五"到本次 调查各个背景点的无机污染物变化情况.背景点水 田土壤中,F 在 C 层有显著上升,Co 在 A 层和 B 层 检验结论有显著上升.Pb 和 V 在 A 层受到外界环 境的剧烈影响,背景点土壤中 Zn 淋出作用强烈而 显著下降.背景点旱地土壤中,监测指标含量比较稳 定,几乎没有发生显著性变化.Cd 和 Pb 在背景点林 地各层土壤中都受到外来因素的干扰而显著上升, 而其他元素主要受自然环境雨水的淋洗作用有所 下降.

参考文献

- [1] GERGELY T, TAMAS H, GABOR S, et al. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment[J].Science of the Total Environment, 2016, 565:1054-1062.
- [2] QU Mingkai, LI Weidong, ZHANG Chuanrong, et al. Assessing the pollution risk of soil chromium based on loading capacity of paddy soil at a regional scale[J].Scientfic Reports, 2015, 5:18451.
- [3] QI Jianying, ZHANG Hailong, LI Xiangping, et al. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China[J].Environmental Monitoring and Assessment, 2016, 188(7):413.
- [4] 李飞,黄瑾辉,曾光明,等.基于 Monte-Carlo 模拟的土壤环境 重金属污染评价法与实例研[J].湖南大学学报:自然科学版, 2013.40(9):103-108.
 LI Fei, HUANG Jinhui, ZENG Guangming, et al. Probabilistic environmental quality assessment method and case study of

environmental quality assessment method and case study of soil heavy metals based on Monte-Carlo simulation[J].Journal of Hunan University:Natural Science,2013,40(9):103-108. (In Chinese)

- [5] 张华,蒋鹏,许石豪,等.有机污染场地环境初步调查与风险评估[J].安全与环境工程,2012,19(6):64-68.
 ZHANG Hua,JIANG Peng,XU Shihao, et al. Preliminary environmental investigation and risk assessment of an organic contaminated site[J].Safety and Environmental Engineering, 2012,19(6):64-68.(In Chinese)
- [6] CETIN B.Investigation of PAHs, PCBs and PCNs in soils around a heavily industrialized area in Kocaeli, Turkey; Concentrations, distributions, sources and toxicological effects[J]. Science of the Total Environment, 2016, 560/561:160-169.
- [7] AYARI F, HAMDI H, JEDIDI N, et al. Heavy metal distribution in soil and plant in municipal solid waste compost amended plots[J]. International Journal of Environmental Science and Technology, 2010, 7(3):465-472.
- [8] JAFARI A J, RASTEGAR A, FARZADKIA M, et al. Effect of municipal solid waste compost on leaching heavy metals(chromium and lead)into soil[J]. Asian Journal of Chemistry, 2014,

26(18):6147-6150.

- [9] WANG Zaosheng, YAN Changzhou, PAN Qikun, et al. Concentrations of some heavy metals in water, suspended solids, and biota species from Maluan Bay, China and their environmental significance[J].Environmental Monitoring and Assessment, 2011, 175(1):239-249.
- [10] 刘云国,黄宝荣,练湘津,等.重金属污染土壤化学萃取修复技 术影响因素分析[J].湖南大学学报:自然科学版,2005,32(1): 95-98.
 LIU Yunguo, HUANG Bao-ong, LIAN Xiangjin, et al.

Analysis of the influencing factors of soil washing technology for heavy metal contaminated soils[J].Journal of Hunan University:Natural Sciences,2005,32(1):95-98.(In Chinese)

- [11] 徐建玲,盛连喜,王汉席,等.石油废物处置场周边土壤中多环 芳烃的测定及评价[J].分析化学,2014,42(10):1513-1517.
 XU Jianling, SHENG Lianxi, WANG Hanxi, et al. Determination and assessment of polycyclic aromatic hydrocarbons in soil nearby oil waste disposal site[J].Chinese Journal of Analytical Chemistry,2014,42(10):1513-1517.(In Chinese)
- [12] 崔健,都基众,马宏伟,等.沈阳市城郊表层土壤有机污染评价
 [J].生态学报,2012,32(24):7874-7882.
 CUI Jian, DU Jizhong, MA Hongwei, et al. Assessment of organic pollution for surface soil in Shenyang suburbs[J]. Acta
 Ecologica Sinica,2012,32(24):7874-7882. (In Chinese)
- [13] MULLER G. Index of geoaccumlation in sediments of the Rhine river[J].Geojournal,1969,2(3):108-118.
- [14] HAKANSON L. An ecology risk index for squatic pollution control: A sedimentological approach [J]. Water Research, 1980,14(8):975-1001
- [15] 高军使,姜灵彦,党宏斌,等.郑东新区不同利用类型土壤重金属污染评价[J].河南农业科学,2014,43(5):76-81.
 GAO Junxia, JIANG Lingyan, DANG Hongbin, *et al*. Heavy metal pollution in different land use types of soil in Zhengdong new district[J].Journal of Henan Agricultural Sciences,2014, 43(5):76-81.(In Chinese)
- [16] 张珍明,张清海,林绍霞,等.贵州鸟王茶产地不同生态环境土 壤微量元素含量及剖面特征[J].西南农业学报,2015,28(2): 663-669.
 ZHANG Zhenming, ZHANG Qinghai, LIN Shaoxia, et al. Soil

micronutrient content and profile characteristics under different ecological environments in Niaowang tea producing area in Guizhou[J]. Southwest China Journal of Agricultural Sciences 2015,28(2):663-669.(In Chinese)

- [17] 白军红,赵庆庆,卢琼琼,等.白洋淀沼泽化区域土壤重金属含量的剖面分布特征——以烧车淀为例[J].湿地科学,2013,11(2);271-275.
 BAI Junhong, ZHAO Qingqing, LU Qiongqiong, et al. Profile distribution of soil heavy metals in the Paludification region of Baiyangdian Lake——A case study of Shaochedian Lake[J]. Wetland Science,2013,11(2);271-275.(In Chinese)
- [18] GASSMAN P.REYES M.GREEN C.et al. The soil and water assessment tool: Historical development, applications, and future research directions [J]. Transactions of the ASABE, 2007,50(4):1211-1250.
- [19] PAPAIOANNOU D, KALAVROUZIOTIS I K, KOUKOU-LAKIS P A, et al. A proposed method for the assessment of the interactive heavy metal accumulation in soils[J]. Global Nest Journal, 2015, 17(4):835-846.
- [20] KNEBL L, LEITHOLD G, BROCK C. Improving minimum detectable differences in the assessment of soil organic matter change in short-term field experiments [J]. Journal of Plant Nutrition and Soil Science, 2015, 178(1):35-42.