文章编号:1674-2974(2020)02-0035-10

DOI:10.16339/j.cnki.hdxbzkb.2020.02.006

基于正交试验六韧带手性结构展收几何参数优化

刘国勇[†],侯永涛,叶雪松,贺国徽,朱冬梅 (北京科技大学机械工程学院,北京100083)

摘要:针对目前手性结构采用的传统材料并不具备大变形后自恢复的能力,提出一种在面内具备展收特性的金属材料用于六韧带手性结构.利用有限元分析了节环间距、节环直径、节环高度以及韧带厚度等4个因素对六韧带手性结构收拢和展开后的最大应力的影响.以展开后的最大应力为指标,通过正交试验,分析得到了各个因素的影响程度由主到次依次为节环间距、韧带厚度、节环高度和节环直径,并通过极差分析和方差分析选出了一组最优参数,即节环间距70mm、韧带厚度0.06mm、节环高度8mm、节环直径22mm,并且通过试验验证了仿真模型的可靠性及本手性结构具备大变形后自恢复的能力.

关键词:可展收;六韧带;手性;大变形;正交试验 中图分类号:TB31;TB125 文献标志码:A

Optimization of Geometric Parameters of Hexagonal Chiral Structure Based on Orthogonal Experiment

LIU Guoyong[†], HOU Yongtao, YE Xuesong, HE Guohui, ZHU Dongmei

(School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: In view of the fact that the traditional materials used in the present chiral structures do not possess the ability of self-recovery after large deformation, a metallic material with in-plane unfolding and folding capability was proposed for the chiral structures of six ligaments. The influences of four factors, including the node spacing, the node diameter, the node height and the ligament thickness, on the maximum stress of the hexagonal ligament chiral structure after folding and unfolding were analyzed by finite element method. Taking the maximum stress after unfolding as the index, the effect of each factor was analyzed by orthogonal experiment. The order of influence is the node spacing, the ligament thickness, the node height and the node diameter. As a result, a set of optimal parameters can be obtained by range analysis and variance analysis, namely, the node height 8 mm, the node spacing 70 mm, the ligament thickness 0.06 mm, and the node diameter 22 mm. Meanwhile, the reliability of the simulation model was verified and the chiral structure has the ability of self-recovery after large deformation by experiments.

Key words: deployable and folding; six ligaments; chirality; large deformation; orthogonal experiment

* 收稿日期:2019-04-11

作者简介:刘国勇(1969—),男,湖北宜城人,北京科技大学副教授,博士

基金项目:国家自然科学基金资助项目(51405014), National Natural Science Foundation of China(51405014);国家留学基金委资助项目 (201806465019), China Scholarship Council(201806465019)

[†]通讯联系人,E-mail:gy_liu666@ustb.edu.cn

1989 年 Wojciechowski^[1]提出了手性结构的概念. 六韧带手性蜂窝结构是一种负泊松比结构,近年来 因具有良好的力学性能而受到广泛的关注^[2]. Prall 等³³提出了六韧带手性蜂窝结构,证明了该蜂窝结构 的泊松比为-1. Alderson 等^[4]对三韧带同向、三韧带 反向、四韧带同向、四韧带反向、六韧带手性蜂窝结 构在面内准静态压缩下的力学行为进行了试验研 究. Bettini 等⁵提出了一种六韧带手性蜂窝结构的加 工方法,并且用碳纤维材料加工了具有7个节点(为 了与 ABAOUS 中的网格节点区分,本文以节环代替 六韧带手性蜂窝结构中的节点表述)的六韧带手性 蜂窝结构,用有限元方法及试验对其受载变形进行 研究. Airoldi 等⁶⁶介绍了用碳纤维材料加工多个节环 的六韧带手性蜂窝结构,并对其力学性能进行研究. Airoldi 等四研究一种新型六韧带手性蜂窝结构,并用 有限元方法及试验对其力学性能进行研究. Zhong 等間采用椭圆积分理论分析了四边形蜂窝结构在大 变形下的非线性力学响应,并通过数值模拟验证了 结果. Mousanezhad 等¹⁹基于能量的方法系统地研究 了蜂窝结构的面内弹性响应特性.赵显伟¹⁰¹用数值 模拟方法研究了四韧带同向手性蜂窝结构的几何参 数对力学性能的影响. Ruan 等凹对六边形蜂窝结构 在两种方向分别进行了面内冲击的研究. Hu 等 [12-14] 研究了六边形蜂窝结构分别在低速冲击压缩和高速 冲击压缩时的力学行为, 推导出高速冲击和低速冲 击之间的临界速度公式,并通过试验和理论分析研 究了由 ABS 聚合物制成的三韧带反向蜂窝结构的 准静态力学性能. 卢子兴等四研究了具有手性和反 手性构型的负泊松比蜂窝在不同冲击速度下的变形 模式和能量吸收等动态力学响应特性.张新春等16 利用数值模拟方法研究了六韧带手性蜂窝结构的面 内冲击动力学特性.张政等四分析了六韧带手性蜂 窝结构在受到面内冲击时的力学性能.目前研究其 内容主要集中于小变形时的静力学性能、冲击动力 学以及屈服方面,并目所研究的六韧带手性蜂窝结 构材料主要是复合材料、尼龙塑料等,对材料的大变 形六韧带手性蜂窝结构研究较少.目前的传统材料 并不具备大变形后自动恢复的能力,大变形展收与 小变形的力学行为有较大的不同,对可展收手性结 构在大变形时的各种力学性能的研究还十分缺乏.

与传统的手性蜂窝结构不同,本文所讨论的手 性蜂窝结构其制作材料是金属,该种手性结构可用 焊接的方法加工得到^[18],具有重量轻的特点,韧带厚 度仅有约 0.1 mm,且不容易发生脆断,易加工、变形 量大、可展收、且不存在压溃现象.本文主要讨论了 材料为金属的六韧带手性蜂窝结构在大变形情况 下,不同节环间距、节环高度、节环直径以及韧带厚 度的面内展收性能,得到不同结构参数对该六韧带 手性蜂窝结构的力学行为的影响规律以及展收时的 最优参数,用来指导该种结构在可变形飞行器方面 的应用.

1 模型建立

1.1 六韧带手性结构的几何参数

图 1 为六韧带手性结构示意图, 六韧带手性结构由节环和连接相邻节环的韧带组成. L 为相邻两节环间距, Φ 为节环直径(外径), t₁ 为韧带厚度, t₂ 为节环厚度, θ 为相邻节环连线与相对节环连线的夹角, 节环高度用 H 表示.

图1 六韧带手性结构示意图

Fig.1 Schematic diagram of chiral structure of six ligaments

1.2 有限元模型

采用有限元软件 ABAQUS 对六韧带手性结构 大变形力学特性进行分析. 节环与韧带的材料分别 选用 Q235 和 65Mn, 假定节环材料为理想弹塑性材 料,材料参数如表 1 所示.

> 表 1 材料参数表 Tab.1 Material parameter

林彩	密度/	泊松护	弹性模量	屋服应力
443 4-1	$(kg \cdot m^{-3})$	1114 14	/GPa	лцикл <u>и</u> . / J
Q235	7 858	0.33	210	$\sigma_{\rm q} = 235 {\rm MPa}$
				当 σ_m = 785 MPa时, ε_m = 0;
65Mn	7 820	0.288	210	当 $\sigma_{\rm m}$ = 980 MPa 时,
				$\varepsilon_{\rm m} = 0.073~755$

首先使用三维壳单元建立节环以及韧带模型, 然后将节环和相连的韧带绑定;单元类型选择 S4R (四结点曲面薄壳,减缩积分,沙漏控制,有限膜应 变);单元库选择 Explicit;几何阶次选择线性;族选 项选择壳;单元形状选择四边形;算法选用进阶算 法.由于在韧带与节环之间以及韧带与韧带之间在 展收过程中存在接触行为,因而采用通用接触,切向 行为设置为无摩擦,法向行为设置为硬接触.

收拢前后模型如图 2 所示. 分别选择 7 个节环 的中心来创建参考点 RP1~RP7, 将创建的参考点与 对应节环的内表面进行耦合,然后在所建参考点处 施加对应的边界条件及载荷,使周围六个节环同时 均匀地沿图3中虚线运动,并使每个节环以图3所 示的转动方向在 x-y 平面内绕自身的轴线转动;限 制 RP7 在 x,y,z 方向位移以及绕 x,y 转动的自由 度,使其绕着z轴旋转,以此达到展收的效果.

图 2 收拢前后模型

图 3 收拢及展开过程示意图

Fig.3 Folding and unfolding process schematic

1.3 网格无关性证明

为确定网格敏感性对计算结果的影响,分别划 分4种不同的网格方案,以收拢后的最大应力为参 考,通过数值计算选取计算结果较为稳定的网格尺 寸,计算结果如表2所示.在网格尺寸为1mm时,最 大应力仿真结果与最小尺寸仿真结果偏差在 0.5% 以内,所以本文取网格尺寸为1mm进行仿真计算.

表 2 不同网格划分结果

Tab.2 The results of different meshing

方案	网格数	基本单元尺寸/mm	最大应力/MPa	误差/%
1	3 264	2	795.3	0.176
2	13 284	1	793.0	0.113
3	20 772	0.8	793.2	0.088
4	52 680	0.5	793.9	0.000

2 有限元模型验证

2.1 展收试验

在本文仿真分析中,假定韧带为弹塑性材料,收 拢后能够完全展开并恢复到收拢前的状态.现制作 六韧带手性结构以及收拢工装、收拢工具(图 4),进 行六韧带手性结构的展收试验, 来证明本文选取的 金属材料制成的手性结构具备大变形后自动恢复原 来状态的功能.

(c)定位销 图4 试验工具

(d)手性结构

Fig.4 Testing tool

在进行试验前首先按照图 5 所示测量六韧带手 性结构的长宽尺寸,然后利用图4中工具将其收拢 到图6所示状态,保持一周后将其释放,再次测量长 宽并记录. 换成另一六韧带手性结构,将上述过程重 复3次.记录及仿真结果见表3.

图 5 测量位置示意图 Fig.5 Measuring position

图 6 收拢后示意图 Fig.6 Schematic diagram after folding

表 3 试验与仿真结果对比 Tab.3 The comparison of test and simulation results

		-			
山家	台里	测导步粉	展收前	展收后	展收前后
内谷	迎且	侧里八翼	长度/mm	长度/mm	差值/mm
估古	X	_	118	118	0
70 共	Y		104.6	104.6	0
		1	117.2	117.1	0.1
	X	2	117.2	117.2	0
物		3	117.3	117.1	0.2
理		平均值	117.23	117.13	0.1
试		1	105.8	105.5	0.3
验	V	2	105.7	105.6	0.1
	Ŷ	3	105.8	105.5	0.3
		平均值	105.77	105.53	0.24

由表 3 分析可知,试验中试件与理论尺寸有所 不同,这是由加工误差和测量误差引起的.由金属制 作的六韧带手性结构收拢后将其释放,能够自动恢 复到原来的状态,具备自恢复能力.

展开后的试验件的残余应力测试可以采用盲孔 法或 X 射线法,为保证样件完好,可选用 X 射线应 力测定仪(X-350A)进行残余应力测试.将图 7 圆圈 中两条线的十字交叉点对准仿真结果显示的最大应 力位置,然后调整电压和电流大小对发射枪进行预 热,最后设置各项参数即可进行测试,其中测量方法 选择倾侧固定 ⊎ 法,定峰方法选择交相关法.

图 7 X射线应力测定仪(X-350A) Fig.7 X-ray stress tester(X-350A)

2.2 拉伸试验

为了验证仿真模型的可靠性,对六韧带手性结构进行加工,并且进行单节环拉伸试验,和仿真试验结果进行对比.试验采用精度等级为0.5,加载精度0.1 N的微机控制电子万能机进行加载,试验机与装有 SANS 系统的电脑连接,进行力-位移检测,应变片(BX120-1AA)的粘贴位置如图 8 所示,宽度方向在韧带中心,图中的编号1、2、3 分别对应应变测试系统中的 AI1-1、AI1-2、AI1-3,试验时利用试验机以 10 mm/min 的速度进行加载,直到载荷达到 5 N,让其保持 5 min 后再进行卸载,观察载荷为 5 N 时的应变.试验状态以及韧带应变分别如图 9 和图 10 所示.

Fig.8 Position of strain gauges

图 9 试验状态 Fig.9 Testing status

利用 ABAQUS 对上述试验过程进行仿真模拟, 试验中得到该六韧带手性结构的位移-载荷曲线如 图 11 所示,可以发现位移与载荷接近线性关系,当 载荷为 5 N 时,位移为 8 mm,因而在仿真时,同样以 10 mm/min 的速度进行加载,直到位移为 8 mm,然后 观察变形情况,如图 12 所示,并对编号 1、2、3 处单元 的名义应变进行测量,与试验进行对比,结果见表 4.

Fig.12 Results of simulation

表 4 试验与仿真结果对比

Tab.4 The comparison of t	est and simulation results
---------------------------	----------------------------

加载力/N	通道	试验名义 应变值/με	仿真名义 应变/με	误差/%
	AI1-1	676	649	3.99
5	AI1-2	617	624	1.13
	AI1-3	445	445	0.00

误差= /试验名义应变值-仿真名义应变 / ×100% 试验名义应变值

试验以及仿真结果显示,应变误差不超过4%, 而且仿真变形情况与实际变形基本一致,因而本研 究仿真模型可行,仿真结果可靠.

3 结构参数对最大应力影响仿真分析

选取六韧带手性蜂窝结构节环高度 12 mm、节 环直径 16 mm、节环间距 50 mm 以及韧带厚度 0.1 mm 作为无量纲基准,取无量纲节环高度为 H=12,无 量纲节环直径为 Φ=16,无量纲节环间距为 L=50,无 量纲韧带厚度为 t₁=0.1,对不同参数下的构件进行仿 真分析.由于本文研究的是一种正六边形手性蜂窝 结构,即 θ=30°,故不考虑角度的影响.

对六韧带手性蜂窝结构进行收拢和展开过程的 仿真分析,设置匀速收拢(沿图3虚线方向的速度为 3.5 mm/s)到最终状态时,周围六个节环相对于中间 节环的距离为25.2 mm,比较不同参数时收拢到最终 状态的最大应力以及展开后的最大应力,收拢和展 开时,最大应力较小的构件展收性能较好.仿真计算 发现,韧带长度和节环直径的比值较大时,将会达到 屈服极限;韧带厚度较大时,展开后的应力会很大, 故取节环间距 L 分别为 50、60、70 和 80 mm;取节环 直径 Φ 分别为 16、18、20 和 22 mm;取韧带厚度 t₁ 分 别为 0.06、0.08、0.10 和 0.12 mm;节环高度 H 分别为 8、10、12 和 14 mm.

由于蜂窝结构的相对密度是一个很重要的指标,定义六韧带单胞蜂窝结构的相对密度为总质量 *m*与包络正六边形体积 *V* 的比值.图 13 中 *L*_r表示 韧带长度,其表达式为:

图 13 几何参数示意图

Fig.13 Schematic diagram of geometric parameter 节环截面积为:

$$A = \pi \left(\frac{\Phi}{2}\right)^2 - \pi \left(\frac{\Phi}{2} - t_2\right)^2$$
(2)

总质量为:

m

$$= 7\rho_{Q235}AH + 12\rho_{65Mn}L_{r}t_{1}H =$$

$$7\rho_{Q235}H\pi \left[\left(\frac{\Phi}{2}\right)^{2} - \left(\frac{\Phi}{2} - t_{2}\right)^{2} \right] +$$

$$12r H + 2\sqrt{L^{2} + \Phi^{2}}$$
(6)

 $12\rho_{65Mn}Ht_1\sqrt{L^2+\Phi^2}$ (3) 总体积为:

$$V = \frac{\sqrt{3}}{2} (\sqrt{3}L + \Phi^2) H$$
 (4)

所以相对密度为:

$$\rho = \frac{m}{V} = \frac{7\rho_{0235}\pi \left[\left(\frac{\Phi}{2}\right)^2 - \left(\frac{\Phi}{2} - t_2\right)^2 \right] + 12\rho_{65Mn}t_1\sqrt{L^2 + \Phi^2}}{\frac{\sqrt{3}}{2}(\sqrt{3}L + \Phi)^2}$$
(5)

由式(5)可知,影响相对密度的因素有节环直径 Φ 、节环厚度 t_2 、韧带厚度 t_1 和节环间距 L,因为节环 厚度较大,收拢和展开时变形很小,故可以通过调节 节环厚度来保证相对密度一致. 在选取的各个无量 纲参数为1时,取节环厚度为1.3 mm,此时相对密度 为416.26 kg/m³. 保持相对密度不变,节环厚度随各 参数的变化情况如图 14 所示.

由图 14 可知, 节环厚度在 1~4 mm 之间调节可 以保证相对密度一致, 而节环厚度 t₂ 为 1 mm 时,收 拢及展开过程中变形很小,可以忽略,故不研究节环 厚度对手性结构影响, 也可以忽略相对密度对本文 研究内容的影响,所以在以后的研究中,节环厚度取 值为 1 mm.

3.1 节环高度

保持无量纲节环间距、无量纲节环直径、无量纲 韧带厚度均为1,观察无量纲节环高度变化时,构件 收拢及展开后的最大应力变化曲线分别如图15和 图16所示.

Fig.15 The maximum stress change curve after folding when the node height changes

仿真结果显示,构件进行收拢后,节环高度大的 构件最大应力小,无量纲节环高度为1.2 时最大应 力为794.90 MPa. 因为节环高度增大时,构件易收 拢,使得产生的最大应力减小.展开过程中,应力与 载荷(接触面积)、应力释放有关.当无量纲节环高度 为1时,展开后构件的最大残余应力为最小值,其值 为360.90 MPa;无量纲节环高度小于1时,构件展开 后最大应力增加,这是因为此时韧带与节环接触面 积减小,内应力容易释放,但相同载荷条件下应力会 增加较多,这时载荷为主导,反应出来是节环高度减 小,构件最大应力增加;无量纲节环离度大于1时, 展开后构件最大应力增大,这是因为节环与韧带的 接触面积增加,使得与节环接触的韧带在展开时不 容易释放内部的应力,反应出来最大应力会增加.

3.2 节环直径

保持无量纲节环间距、无量纲节环高度、无量纲 韧带厚度均为1,观察无量纲节环直径变化时,构件 收拢以及展开后的最大应力变化曲线分别如图 17 和图 18 所示.

仿真结果显示,随着节环直径的增大,构件收拢 以及展开后的最大应力都急剧减小,最小分别达到 791.80 MPa 与 239.90 MPa,这是因为随着节环直径 的增大,韧带卷曲的程度逐渐减小,导致应力也逐渐 下降.但是由于节环厚度是韧带厚度的 5 倍以上,节 环直径太大会显著增加结构的重量,使得相对密度 过大,故节环直径不宜太大.

3.3 节环间距

保持无量纲节环直径、无量纲节环高度、无量纲 韧带厚度均为1,观察无量纲节环间距变化时,构件 收拢以及展开后的最大应力变化曲线分别如图 19 和图 20 所示.

仿真结果显示,随着节环间距增大,构件收拢以 及展开后的最大应力都明显减小,最小分别达到 616.3 MPa 与 50 850 Pa,但是由于节环间距较大时会 使得构件整体的刚度变小,当节环间距超过 80 mm 时不易收拢,所以节环间距不应超过 80 mm.

图 19 节环间距变化时构件收拢后的最大应力变化曲线 Fig.19 The maximum stress change curve after folding

when the node spacing changes

when the node spacing changes

3.4 韧带厚度

保持无量纲节环直径、无量纲节环高度、无量纲 节环间距均为1,观察无量纲韧带厚度变化时,构件 收拢以及展开后的最大应力变化曲线分别如图 21 和图 22 所示.

图 22 韧带厚度变化时构件展开后的最大应力变化曲线 Fig.22 The maximum stress change curve after unfolding when the ligament thickness changes

仿真结果显示,随着韧带厚度增大,构件收拢以 及展开后的最大应力都增大,应力最小可分别达到 683 MPa 与 27 670 Pa,但是韧带厚度过小会使得构 件的整体刚度变小,影响整体的支撑性能,故韧带厚 度不宜太小.

4 几何参数优化

为了在构件展收时,找到一组最优参数使得构 件收展后的最大应力最小,进行了正交试验设计.六 韧带手性蜂窝结构的几何参数,即韧带厚度、节环直 径、节环间距以及节环高度对该结构展收过程中的 最大应力影响较大,故选取这些参数作为本次的试 验因素.由于无法确定哪两个因素有交互作用,若考 虑交互作用,则正交试验表规模太大,所以暂时按照 无交互作用进行正交试验设计.正交试验中的研究 因素和水平如表 5 所示.

表 5 因素水平表 Tab.5 The table of factors and levels

水平	(A)韧带 厚度/mm	(B)节环 直径/mm	(C)节环 间距/mm	(D)节环 高度/mm
1	0.06	16	50	8
2	0.08	18	60	10
3	0.10	20	70	12
4	0.12	22	80	14

由于本次正交试验是一个4因素4水平试验, 故可选用4水平表进行正交试验设计,正交表为 L16(4⁵),具体数据见表6,其中E为误差列.

进行正交试验极差分析时,每一列的数值都是 不相同的,即每种因素水平的变化对所选指标的影 响是不相同的,每一列的极值越大,说明该因素对所 选指标的影响程度越大.

由表 7 可知,4 个因素中所求得的极差大小顺序 依次为 $R_{\rm C}$ 、 $R_{\rm A}$ 、 $R_{\rm D}$ 、 $R_{\rm B}$,所以各影响因素从主到次的顺 序依次为 C (节环间距)、A (韧带厚度)、D (节环高 度)、B(节环直径).为确定这些参数对最大应力影响 的显著性,进行方差分析,分析结果见表 8.

	Tab.6	Experi	mental a	arrange	ment ar	nd results
序号	А	Е	В	С	D	最大应力/Pa
1	1	1	1	1	1	3.042×10 ⁴
2	1	2	2	2	2	3.445×104
3	1	3	3	3	3	3.103×10 ⁴
4	1	4	4	4	4	2.938×10 ³
5	2	1	2	3	4	3.475×10 ⁴
6	2	2	1	4	3	3.282×104
7	2	3	4	1	2	5.314×107
8	2	4	3	2	1	1.992×104
9	3	1	3	4	2	2.797×10 ³
10	3	2	4	3	1	3.270×104
11	3	3	1	2	4	1.398×10 ⁸
12	3	4	2	1	3	3.609×10 ⁸
13	4	1	4	2	3	1.786×10^{8}
14	4	2	3	1	4	5.431×10 ⁸
15	4	3	2	4	1	4.127×10 ⁴
16	4	4	1	3	2	1.125×10 ⁸

表 6 试验安排与结果

表 7 最大应力的极差分析 Tab.7 Range analysis of maximum stress

全新	最大应力/Pa						
多 奴 ·	А	Е	В	С	D		
K_1	9.884×10 ⁴	1.786×10 ⁸	2.423×10 ⁸	9.571×10 ⁸	1.243×10 ⁵		
K_2	5.323×107	5.431×10 ⁸	3.610×10 ⁸	3.184×10 ⁸	1.656×10 ⁸		
K_3	5.007×10 ⁸	1.929×10 ⁸	5.431×10 ⁸	1.126×10 ⁸	5.395×10 ⁸		
K_4	8.342×10 ⁸	4.834×10 ⁸	2.317×10 ⁸	7.983×10 ⁸	6.829×10 ⁸		
k_1	2.471×10 ⁴	4.465×107	6.058×10 ⁷	2.392×10 ⁸	3.108×10 ⁴		
k_2	1.331×10 ⁷	1.358×10 ⁸	9.025×107	7.960×10 ⁷	4.140×107		
k_3	1.252×10 ⁸	4.823×107	1.358×10 ⁸	2.815×107	1.349×10 ⁸		
k_4	2.086×10 ⁸	1.209×10 ⁸	5.793×10 ⁷	1.996×10 ⁸	1.707×10 ⁸		
极差R	8.342×10 ⁸	3.048×10 ⁸	3.114×10 ⁸	8.445×10 ⁸	5.586×10 ⁸		
因素主、次			СА	D B			
优方案			A_1B_4	C_3D_1			

表 8 最大应力的方差分析 Tab.8 Variance analysis of maximum stress

		unuiysis or	muximum su c	
方差来源	平方和	自由度	均方	Р
А	1.169×10 ¹⁷	3	3.387×10 ¹⁶	0.12
В	1.523×10 ¹⁶	3	5.075×10 ¹⁵	0.67
С	1.371×10 ¹⁷	3	4.570×10 ¹⁶	0.10
D	7.578×10 ¹⁶	3	2.526×10 ¹⁶	0.21
误差	2.663×10 ¹⁶	3	8.877×10 ¹⁵	
总和	3.717×10 ¹⁷	15		

表 8 中数据显示, C(节环间距)对最大应力的影响在 90%的置信度上是显著的, A (韧带厚度)和 D (节环高度)的显著性低于 C, 而 B(节环直径)则是不显著的.

根据极差分析和方差分析的结果,确定出节环 高度为 8 mm,节环间距为 70 mm,韧带厚度为 0.06 mm,节环直径为 22 mm 为最优方案.根据以上正交 试验得到的最优方案进行数值模拟,所得六韧带手 性蜂窝结构展收后的最大应力为 321.6 Pa,仅为韧带 屈服应力的 4 × 10⁻⁷,由此可以认为此优化方案达到 了优化目标,可以不考虑参数的交互作用.最优方案 数值计算云图如图 23 所示.

Fig.23 Stress contour of the optimal case

5 结 论

针对应用于手性蜂窝结构的传统材料不具备大 变形后自动恢复的能力,提出将 65Mn 应用于韧带 结构,通过有限元仿真以及试验验证了此金属材料 确实具备大变形自恢复能力,且大变形恢复后残余 变形很小.为得到手性蜂窝结构的最优参数,采用正 交试验得到结论如下:

1)单独考虑各个因素对韧带应力的影响规律 为:当构件进行收拢时,节环高度大的构件最大应力 较小,展开后的最大应力随着节环高度的增加先减 小后增大,无量纲节环高度为1时取得最小值;随着 节环直径的增大,构件收拢以及展开后的最大应力 都减小;随着节环间距增大,构件收拢以及展开后的 最大应力都减小;随着韧带厚度增加,构件收拢以及 展开后的最大应力都增大.

2)以六韧带手性结构收拢再展开后的最大应力 为性能指标,其影响因素由主到次分别为节环间距、 韧带厚度、节环高度、节环直径;最优方案为节环高 度 8 mm,节环间距 70 mm,韧带厚度 0.06 mm,节环直 径 22 mm,此方案展开后的最大应力仅为 321.6 Pa.

参考文献

- WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative Poisson ratio [J]. Physics Letters A, 1989, 137(1/2):60– 64.
- [2] 徐时吟,黄修长,华宏星. 六韧带手性结构的能带特性[J]. 上海 交通大学学报,2013,47(2):167—172.
 XU S Y,HUANG X C,HUA H X. Study on the band structure of hexagonal chiral structures [J]. Journal of Shanghai Jiaotong University,2013,47 (2):167—172. (In Chinese)
- [3] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1 [J]. International Journal of Mechanical Sciences, 1997, 39(3):305-314.
- [4] ALDERSON A, ALDERSON K L, ATTARD D, et al. Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J]. Composites Science and Technology, 2010, 70(7):1042-1048.
- [5] BETTINI P, AIROLDI A, SALA G, et al. Composite chiral structures for morphing airfoils:Numerical analyses and development of a manufacturing process [J]. Composites Part B:Engineering, 2010,41(2):133-147.
- [6] AIROLDI A, BETTINI P, PANICHELLI P, et al. Chiral topologies for composite morphing structures -part I: Development of a chiral rib for deformable airfoils [J]. Physica Status Solidi (B),2015,252 (7):1435-1445.
- [7] AIROLDI A, BETTINI P, PANICHELLI P, et al. Chiral topologies for composite morphing structures-part II:Novel configurations and

technological processes [J]. Physica Status Solidi (B),2015,252 (7):1446–1454.

- [8] ZHONG R C, FU M H, YIN Q Y, et al. Special characteristics of tetrachiral honeycombs under large deformation [J]. International Journal of Solids and Structures, 2019, 169: 166–176.
- [9] MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, anti – chiral, and hierarchical honeycombs: a simple energy-based approach [J]. Theoretical and Applied Mechanics Letters, 2016, 6(2):81–96.
- [10] 赵显伟.可变形蜂窝结构的力学性能分析[D].哈尔滨:哈尔滨 工业大学航天学院,2013:34-46.
 ZHAO X W. The analysis of mechanical properties of morphing honeycomb structures [D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2013:34-46. (In Chinese)
- [11] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2):161–182.
- [12] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs [J]. International Journal of Impact Engineering, 2010, 37 (5):467-474.
- [13] HU L L, YU T X. Mechanical behavior of hexagonal honeycombs under low-velocity impact-theory and simulations [J]. International Journal of Solids and Structures, 2013, 50(20/21): 3152-3165.
- [14] HU L L,LUO Z R,ZHANG Z Y,et al. Mechanical property of reentrant anti-trichiral honeycombs under large deformation [J]. Composites Part B:Engineering, 2019, 163:107–120.
- [15] 卢子兴,李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击,2017,36(21):16-22.
 LU Z X,LI K. In-plane dynamic crushing of chiral and anti-chiral honeycombs [J]. Journal of Vibration and Shock,2017,36(21): 16-22.(In Chinese)
- [16] 张新春,祝晓燕,李娜. 六韧带手性蜂窝结构的动力学响应特性研究[J]. 振动与冲击,2016,35(8):1-7.
 ZHANG X C,ZHU X Y,LI N. A study of the dynamic response characteristics of hexagonal chiral honeycombs [J]. Journal of Vibration and Shock, 2016,35(8):1-7.(In Chinese)
- [17] 张政,苏继龙.六韧带手性蜂窝材料韧带的冲击动荷系数及稳定性分析[J].复合材料学报,2019,36(5):1313—1318.
 ZHANG Z,SU J L. Impact dynamic load coefficient and stability analysis of ligament of hexachiral honeycomb [J]. Acta Materiae Compositae Sinica,2019,36(5):1313—1318.(In Chinese)
- [18] 刘国勇,杨广任,刘海平.一种可展收手性蜂窝结构加工方法及加工装置:中国,CN105666077A[P].2016-06-15.
 LIU G Y,YANG G R,LIU H P. Method and processing device for deployable chiral honeycomb structure: China, CN105666077A[P]. 2016-06-15. (In Chinese)