文章编号:1674-2974(2020)10-0076-10

DOI:10.16339/j.cnki.hdxbzkb.2020.10.009

无线充电系统耦合器自感与互感的非线性研究

李万路^{1,2†}, 汪泉弟^{1,2}, 李景红³, 王赢聪⁴ (1. 重庆大学 输配电装备系统安全与新技术国家重点实验室, 重庆 400044;

2. 重庆大学 电气工程学院,重庆 400044;3. 国网河南省电力公司,河南 郑州 450000;

4. 国网金华供电公司,浙江 金华 321000)

摘要:当前在电动汽车无线充电系统的耦合器中,铁氧体板被广泛使用.本文借助数值 计算方法深入研究带有铁氧体板的耦合器的自感与互感的非线性,并考虑铁氧体板的厚度、线 圈与铁氧体板的间距、铁氧体板的尺寸以及传输距离等4个关键参数对非线性的影响.研究发 现:自感与互感的非线性受铁氧体板厚度的影响最大,受线圈与铁氧体板的间距以及铁氧体板 的尺寸的影响较小,而受传输距离的影响很小.此外,自感与互感非线性对应的饱和电流与铁 氧体板的厚度和线圈与铁氧体板的间距正相关,与铁氧体板的尺寸成负相关,而互感的饱和电 流随传输距离的增大而小幅增大.继而给出了对应最小饱和电流的4种参数组合,并得到了最 小饱和电流为160A,即当线圈电流小于160A时,耦合器的自感与互感为线性,耦合器可看 作线性设备.最后,利用实验验证了仿真结果的正确性,并利用耦合器在电流不大时的线性特 性对耦合器周围的磁场进行了分析.

关键词:无线充电系统;自感与互感;非线性;多参数分析;饱和电流 中图分类号:TM12 文献标志码:A

Study on Nonlinearity of Self–inductance and Mutual Inductance for Couplers of Wireless Charging Systems

LI Wanlu^{1,2†}, WANG Quandi^{1,2}, LI Jinghong³, WANG Yingcong⁴

 State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;

2. School of Electrical Engineering, Chongqing University, Chongqing 400044, China;

3. State Grid Henan Electric Power Company, Zhengzhou 450000, China;

4. State Grid Jinhua Power Supply Company, Jinhua 321000, China)

Abstract: Currently, the ferrite plates are widely utilized in couplers of wireless power transfer systems in electric vehicles. In this paper, the nonlinearity of the self-inductance and mutual inductance for the couplers with ferrite plates is intensively studied by numerical calculation method, and four key parameters including the thickness of the ferrite plates, the spacing between the coils and the ferrite plates, the size of ferrite plates and transfer distance are considered. It is found that the nonlinearity of self-inductance and mutual inductance is greatly affected by the thick-

* 收稿日期:2019-11-29
 基金项目:国家自然科学基金资助项目(51477014), National Natural Science Foundation of China(51477014)
 作者简介:李万路(1990—),男,河南商丘人,重庆大学博士研究生
 † 通讯联系人, E-mail: 20161101026@cqu.edu.cn

ness of the ferrite plates, followed by the spacing between the coils and the ferrite plates and the size of the ferrite plates, and little affected by the transfer distance. In addition, the saturation current corresponding to the nonlinearity of the self-inductance and mutual inductance is positively correlated with the thickness of the ferrite plates and the spacing between the coils and the ferrite plates, and negatively correlated with the size of the ferrite plates. The saturation current corresponding to the nonlinearity of the mutual inductance increases slightly with the increase of transfer distance. Then, the combination of the four parameters corresponding to the minimum saturation current is provided, and the minimum saturation current is 160 A. That is, when the coil current is less than 160 A, the self-inductance and mutual inductance of the coupler are linear, and the coupler can be treated as a linear device. Finally, the correctness of the simulation is verified by experiment. The linear characteristics of the coupler are used to analyze the magnetic field around the coupler when the current is not large.

Key words: wireless power transfer; self - inductance and mutual inductance; nonlinearity; multi - parameter analysis; saturation current

目前,无线电能传输(Wireless Power Transfer, WPT)技术由于充电安全、方便,被越来越多地运用 到电动汽车充电领域[1-2]. 如韩国高等科学技术学院 的科研团队实现了动态实时 WPT,该系统运行时,流 过发射线圈的电流高达 200 A, 传输功率可达 100 kW,传输效率可达 80%^[3]. 重庆大学孙跃教授团队与 南方电网集团合作搭建了电能传输距离 40 cm、横向 偏移可达 20 cm、最大输出功率 30 kW 和行进供电 效率 75%~90%的 WPT 系统^[4]. 中兴新能源与长城汽 车合作在 2015 底研制出了用于电动汽车的无线充 电设备,能够提供 3.3~60 kW 的功率[5]. 国家电网也 在积极与一些高校以及研究所开展这方面的研究¹⁰. 电网给电动汽车充电的示意图如图 1(a)所示,包括 整流滤波电路、高频逆变电路、借助电磁感应和电路 谐振的耦合器以及最终以电动汽车电池为负载的整 流滤波电路. 电动汽车的耦合器由发射器(Tx)和接 收器(Rx)组成,而Tx和Rx则由线圈和铁氧体板构 成,线圈之间的距离为d,线圈与相应侧铁氧体板的 间距为h,铁氧体板一般采用方形结构,边长为l,厚 度为 s,耦合器的剖面结构图如图 1(b)所示.

线圈两侧添加铁氧体板不仅能使系统的耦合作 用大大增强,同时也起到了电磁屏蔽的作用^[7-8].但铁 氧体板由于存在非线性,它的引入可能使得原本线 性较好的系统耦合器的分析更为复杂.因此,对系统 耦合器的非线性研究显得格外必要.然而,目前针对 WPT系统非线性研究主要集中于发射端的逆变电路 以及负载端的整流电路^[9-10],针对 WPT系统电感的非 线性研究极少.文献[11]对电感采用分段线性处理后 给出了系统的动态特性,但研究中却并未给出电感 具体的非线性特性.文献[12]探究了铁氧体板的厚度 对自感的影响,但未考虑铁氧体板与线圈间距等其 他多个关键参数的影响,此外,也并未考虑互感的非 线性.

and coupler structure

本文针对带有常用的盘式线圈的耦合器的自感 与互感的非线性特性进行了深入研究,采用有限元 数值计算方法,考虑了铁氧体板的厚度、铁氧体板与 线圈的间距、铁氧体板的尺寸以及传输距离等4个 关键因素的影响.之后借助实验对仿真结果进行了 验证.最后利用耦合器的非线性分析了电动汽车 WPT系统周围的磁场分布.

1 铁氧体的磁特性与非线性计算方法

1.1 铁氧体的磁特性

一个小型的 WPT 系统耦合器如图 2 所示,具有 高品质因数的盘式线圈由 0.1 mm × 200 股铜线制作 的利兹线绕制而成.表 1 给出了耦合器的具体参数. 耦合器两侧是型号为 PC95 的锰锌铁氧体板,该铁氧 体由铁、锰、锌的氧化物及其盐类构成,具有高的起 始磁导率,其频率特性和温度特性如图 3 所示.

图 2 WPT 系统的耦合器 Fig.2 Coupler of the WPT system

表 1 WPT 系统的耦合器参数 Tab.1 Parameters of coupler of WPT system

参数符号	物理意义	数值
\$	铁氧体板厚度	5 mm
h	线圈与相应侧铁氧体板间距	2 mm
l	铁氧体板边长	200 mm
d	两个线圈之间的距离	140 mm
—	线圈匝数	19
_	盘式线圈的内/外半径	80 mm/160 mm

从图 3(a)可以看出,在110 kHz 以下铁氧体的 磁导率几乎不随频率变化,而电动汽车 WPT 系统最 有可能的候选工作频率为85 kHz^[13],因此可以认为 电动汽车采用的铁氧体磁导率与频率无关.对于不 同的温度铁氧体表现出不同的饱和程度,温度越高 越容易饱和,如图 3(b)所示. 铁氧体的 B-H 曲线均 可以分为线性区与非线性区,即在磁场强度小于饱 和磁场强度 H_b 的线性区时,磁导率保持恒定,此时 磁感应强度 B 随着磁场强度的增大而线性增大;当 磁场强度超过 H_b进入饱和区时,磁导率随着磁场强 度的增大而逐渐减小.图 3(c)列出了在室温(25 ℃) 下的 PC95 型铁氧体的线性区和非线性区,以及饱和 磁感应强度 B_s ,下面对室温(25 ℃)下的 PC95 铁氧 体材料做进一步讨论. PC95 铁氧体的初始相对磁导 率为3300^[14],在磁场强度为1194A/m时,对应的B。 为 530 mT, 剩磁为 85 mT. 忽略其磁滞效应, 由图 3 (c)的 B-H 曲线可以看出,在线性区磁感应强度随 着磁场强度的增加而线性增加;在饱和区,磁感应强 度不再随着磁场强度的增加而线性增加. B-H 关系 可由式(1)表示:

$$B = \begin{cases} \mu_0 \mu_{\rm rC} H, H \leq H_{\rm b} \\ \mu_0 \mu_{\rm r}(H) H, H > H_{\rm b} \end{cases}$$
(1)

式中: μ_0 为空气中的磁导率; μ_{rc} 为固定的相对磁导率; μ_r (H)表示材料的相对磁导率是磁场强度的函

数,不再是固定值.

磁场强度可以表示为:

 $H_n = T_x I_n e_x + T_y I_n e_y + T_x I_n e_z, n = 1,2$ (2) 式中:n = 1,2分别表示 Tx 和 Rx;参数 T 除了包含线 圈几何特性外,还包含了铁氧体板的几何尺寸,其具 体的表达式很难利用解析方法得到; T_x, T_y, T_z 分别表 示直角坐标 3 个分量对应的 T 参数.由于铁氧体的 非线性磁特性,Tx 和 Rx 产生的总磁场不能采用叠 加原理求解,因此后面的非线性求解采用数值计算 方法.

Tx和Rx的自感与互感按定义式计算,即:

$$L_n = \frac{\Psi_n}{i_n} = \frac{N_n \int_{S_n} B \cdot dS}{i_n}$$
(3)

$$M_{n,j} = \frac{\Psi_j}{i_n} = \frac{N_j \int_{S_i} B \cdot \mathrm{d}S}{i_n}$$
(4)

式中:n(i,j)=1,2分别表示 Tx 和 Rx,且 $n \neq j$;N 为 线圈的匝数.

由式(1)~式(4)可以看出,由于铁氧体的非线性 磁特性,当线圈电流较小时,耦合器的自感与互感是 固定值,但当电流大于一定值后,自感与互感不再是 线性,其值随着线圈电流的变化而变化,即有:

$$L = \begin{cases} L_0, & I \leq I_{b,L} \\ L(I), & I > I_{b,L} \end{cases}$$

$$M = \begin{cases} M_0, & I \leq I_{b,M} \\ M(I), & I > I_{b,M} \end{cases}$$
(6)

式中: L₀和 M₀分别表示小电流下自感与互感的固定值; I_{b1}和 I_{bM}分别表示自感与互感的饱和电流,即 自感或互感开始显现非线性特性对应的线圈电流.

1.2 耦合器非线性电感的数值计算模型

下面采用数值仿真方法分析电动汽车耦合器非 线性自感与互感的特性.数值仿真时线圈的电流变 化范围取为较宽的0~500A,并设定Tx与Rx的电 流保持相等,这个假设是合理的,实际中也可以通过 调节负载大小等电路参数来实现.采用有限元数值 计算方法,由于磁导率在110kHz以下不随频率变 化,因此可以将时变电磁场求解简化为稳态磁场求 解以提高计算效率.借助 COMSOL Multiphysics 软 件,采用磁场的稳态求解器求解,其微分方程为:

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} \tag{7}$$

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{8}$$

$$\boldsymbol{J} = \boldsymbol{\sigma}\boldsymbol{E} + \boldsymbol{J}_{\mathrm{e}} \tag{9}$$

式中:A为磁矢量位; σ 为电导率;E为电场强度; J_e 表示激励电流.

在数值计算中,由于耦合器产生的磁场是个衰 减场,因而额外构建了无限元域以模拟无边界域,同 时也避免了在大开域空间内计算产生大量剖分网格 的情况.此外在仿真中,由于线圈的匝数较多,为了 减小运算量,采用盘式圆环线圈近似代替实际的线 圈模型,但在添加激励时选择"均匀多匝",匝数选择 为19,此时三维仿真模型如图4(a)所示.而由于后 面要对模型进行参数扫描,将会占用大量计算时间. 因此,将方形铁氧体板近似为直径等于边长的圆形 铁氧体板,该等效对自感与互感计算结果的影响可 以忽略,这可以通过后面自感和互感的仿真与实验 的结果对比进行说明.此时模型具有对称性,为了提 高计算效率,将模型转化为二维轴对称模型,如图 4 (b)所示. 另外, 在材料设置中将图 3(c)的 B-H 曲线 导入到铁氧体板材料的磁特性中,而由于图 3(c)只 规定了磁场强度小于1500 A/m的 B-H 曲线,考虑 到实际仿真中铁氧体板内的磁场强度可能会超过 1500 A/m,在 B-H 曲线设置中选择"线性"外推. 当 仿真中磁场强度超过1500 A/m 时,按照图3(c)的 B-H曲线对应 1 500 A/m 处的斜率线性拓展 B-H 特 性曲线.

2 耦合器自感与互感的非线性随4种关键参数的变化

首先分析了磁感应强度随线圈电流的变化关系. 对于表1所示参数的耦合器,铁氧体板内部的3个 点的磁感应强度随线圈电流的变化曲线如图5(b)所 示,图5(a)给出了图4(b)二维对称模型中Tx中3 个观察点的示意图,其中点p1是半个铁氧体板的中 心点,点p2和p3是铁氧体板上的顶点.从图5(b)可以 看出,对于这3个点,相同线圈电流下对应的磁感应 强度不同,主要取决于场点与线圈的距离,距离越近, 磁感应强度越大,但磁感应强度随电流的变化曲线的 拐点都在200A左右,即说明饱和电流约为200A.

下面讨论 WPT 系统耦合器的自感与互感的非 现性随铁氧体板厚度、线圈与铁氧体板的间距、铁 氧体板的边长以及传输距离等 4 个关键参数的变 化情况.

研究中,考虑其他3个参数保持不变,非线性电 感特性仅随某一参数的变化.

2.1 自感与互感的非线性随铁氧体板厚度的变化

设线圈与相应侧的铁氧体板的间距 h = 2 mm, 铁氧体板边长 l = 200 mm, 传输距离 d = 140 mm. 当 铁氧体板的厚度 s 分别取值 2.5 mm、5 mm、7.5 mm、 10 mm 和 12.5 mm 时, 自感与互感随电流的变化如

由图 6 可知,铁氧体板越厚,耦合器电感的饱和 电流越大,即自感和互感线性度越好;当电流达到饱 和电流后,继续增加电流时,铁氧体板厚度越小,自 感和互感值下降越大,当电流达到 500 A 时,铁氧体 板厚度为 2.5 mm 的线圈自感与互感分别只有初始 值的 29.8%和 21.7%,如表 2 所示.表 2 展现了不同 厚度下非线性电感的电感初值和饱和电流的具体数 值.需要说明的是,这里的饱和电流是电感值下降 5%时的电流值.

表 2 耦合器非线性电感随铁氧体板厚度的变化特征 Tab.2 Variation characteristics of coupler nonlinear inductance with thickness of ferrite plates

s/mm	初值/μH		饱和电流/A		电流为 500 A 时 下降的百分比/%	
	自感	互感	自感	互感	自感	互感
2.5	94.4	4.65	120	140	29.8	21.7
5	94.6	4.74	240	260	19.6	14.3
7.5	94.8	4.82	360	400	11.5	8.51
10	95.0	4.88	500	500	5.3	3.7
12.5	95.2	4.95	大于 500	大于 500	0.8	0.6

由表 2 可知,铁氧体板厚度越大,自感与互感的 饱和电流越大,当厚度大于 10 mm 时饱和电流将超 过 500 A;同时对于相同铁氧体板厚度,互感的饱和 电流略大于自感.此外,铁氧体板厚度越大,耦合器 的电感在 500 A 时减小得越少,线性度保持得越好. 然而实际使用中,由于铁氧体板的重量较重,因此厚 度不能太大,这就需要选择合适的厚度.

2.2 自感与互感的非线性随线圈与铁氧体板间距的 变化

设铁氧体板的厚度 s = 5 mm,铁氧体板边长 l =

200 mm,传输距离 *d* = 140 mm. 当线圈与铁氧体板的 间距 *h* 分别取值 0.05 mm、2 mm、5 mm、10 mm 和 15 mm 时,非线性电感随 *h* 的变化曲线如图 7 所示.可 以看出,自感与互感均随着线圈与铁氧体板的间距 的增大而减小.同时,线圈与铁氧体板的间距越大, 耦合器电感的饱和电流越大.接着给出了不同线圈 与铁氧体板间距下非线性电感的电感初值和饱和电 流的具体数值,以及电流为 500 A 时的自感与互感 与初值相比所下降的百分比,如表 3 所示.

Fig.7 Change of nonlinear inductance of coupler with spacing between coils and ferrite plates

表 3 耦合器非线性电感随线圈 与铁氧体板间距的变化特征

 Tab.3 Variation characteristics of coupler nonlinear

 inductance with spacing between coils and ferrite plates

s/mm	初值/µH		饱和电流/A		电流为 500 A 时 下降的百分比/%	
-	自感	互感	自感	互感	自感	互感
0.05	101.4	5.07	220	240	22.7	16.6
2	94.6	4.74	240	260	19.6	14.3
5	86.5	4.31	280	320	15.5	11.1
10	76.9	3.78	360	400	9.8	7.4
15	70.4	3.39	大于 500	大于 500	5.5	4.1

由表 3 可见,线圈与铁氧体板的间距越小,耦合 器电感的饱和电流越小.但即使当线圈与铁氧体板 间距为最小 *h* = 0.05 mm 时,饱和电流也在 220 A 左 右,远大于一般电动汽车充电系统的线圈电流.图 7 还表明,对于相同的线圈电流,自感与互感值会随着 线圈与铁氧体板的间距的减小而明显增大,进而提 高充电系统的传能效率.因此,在电动汽车充电系统 的耦合器中,应尽可能减小线圈与铁氧体板的间距, 即建议线圈贴着铁氧体板安装.

2.3 自感与互感的非线性随铁氧体板边长的变化

设铁氧体板的厚度 s = 5 mm, 线圈与相应侧的 铁氧体板的间距 h = 2 mm, 传输距离 d = 140 mm. 当 铁氧体板边长 l 分别取值 160 mm、180 mm、200 mm、 220 mm 和 240 mm 时, 自感与互感随电流的变化如 图 8 所示.可以看出,耦合器的电感值会随着铁氧体 板尺寸的增大而明显增大,尤其是互感值. 而饱和电 流则随着铁氧体板尺寸的增大而小幅减小,可以在 表 4 中更直观地观察到,当铁氧体板边长为 240 mm, 自感与互感的饱和电流分别约为 220 A 和 240 A, 但整体上非线性电感随铁氧体板尺寸的变化较 小. 在实际工程应用中, 由于铁氧体板尺寸的变化较 小. 在实际工程应用中, 由于铁氧体板尺寸越大,其 重量就会越重,同时考虑到经济性,在实际 WPT 系 统耦合器设计时, 铁氧体板尺寸一般设置为线圈最 大尺寸的 1.1~1.3 倍左右.

表 4 耦合器非线性电感随铁氧体板边长的变化特征 Tab.4 Variation characteristics of coupler nonlinear inductance with side length of ferrite plates

s/mm	初值/μH		饱和电流/A		电流为 500 A 时 下降的百分比/%	
	自感	互感	自感	互感	自感	互感
160	85.8	3.79	300	340	14.2	9.0
180	91.9	4.31	260	280	17.8	12.1
200	94.6	4.74	240	260	19.6	14.3
220	96.2	5.11	240	260	20.6	15.9
240	97.2	5.45	220	240	21.3	17.1

2.4 自感与互感的非线性随耦合器传输距离的变化

设铁氧体板的厚度 *s* = 5 mm, 线圈与相应侧的 铁氧体板的间距 *h* = 2 mm, 铁氧体板边长 *l* = 200 mm. 当传输距离 *d* 分别取值 90 mm、140 mm、180 mm、200 mm 和 220 mm 时, 自感与互感随电流的变 化如图9所示.可以看出,自感随着传输距离的变化 很小,这是因为自感主要取决于自身线圈的尺寸、匝 数、形状以及近侧的铁氧体板,受距离较远物体的影 响很小, 但当传输距离较小时会受另一侧铁氧体板 的影响,但变化幅度较小.而互感则随着传输距离的 变化较为明显,随着传输距离的增大而明显减小.此 外,耦合器自感的非线性特性受传输距离的影响很 小,这可以在表5中清楚地看出,在不同的传输距离 下,自感对应的饱和电流均为240A;但当电流达到 饱和电流后,继续增加电流时,自感会随着电流明显 减小,如当电流为 500 A 时自感下降百分比达到了 19.7%(或 19.6%)左右. 另一方面, 互感对应的饱和 电流受传输距离的影响也很小,但随着传输距离增 大, 电流为 500 A 时对应的互感下降的百分比越小. 当传输距离为 220 mm,互感的饱和电流为 280 A,电 流为 500 A 时互感下降的百分比为 11.7%.

Fig.9 Change of nonlinear inductance of coupler with transmission distance of the coupler

表 5 耦合器非线性电感随耦合器传输距离的变化特征 Tab.5 Variation characteristics of coupler nonlinear inductance with transmission distance of the coupler

s/mm	初值/μH		饱和电流/A		电流为 500 A 时 下降的百分比/%	
	自感	互感	自感	互感	自感	互感
90	95.2	12.9	240	260	19.7	16.3
140	94.6	4.74	240	260	19.6	14.3
180	94.6	2.43	240	280	19.7	12.8
200	94.6	1.81	240	280	19.7	12.2
220	94.6	1.37	240	280	19.7	11.7

总体来说,耦合器自感与互感的非线性受到上述4种参数的影响程度不同,受铁氧体板厚度的影

响较大,接着是线圈与铁氧体板的间距以及铁氧体板的尺寸,受传输距离的影响很小.而自感与互感的饱和电流与铁氧体板厚度以及线圈与铁氧体板的间距成正相关,与铁氧体板的尺寸成负相关,互感的饱和电流随传输距离增大而小幅增大.因此对应自感与互感最小饱和电流的参数组合为:*s* = 5 mm(2.5 mm太小,不适用于电动汽车 WPT系统,不予考虑),*h* = 0.05 mm,*l* = 200 mm,*d* = 90 mm,对应的最小饱和电流为 160 A,因此当线圈电流小于 160 A 时,耦合器可视作线性设备.

事实上,前面研究中的"线圈电流"指的是单匝 线圈的电流,而由于线圈一般为密绕,非线性主要取 决于线圈的总电流,即单匝电流与匝数的乘积.因此 当对其他耦合器的非线性进行评估时,要将此时的 线圈电流依据线圈匝数进行归算.如要研究的线圈 匝数为 10,而本文研究的系统的线圈匝数为 19 匝, 则 10 匝线圈的最小饱和电流归算后的值为 160 A × 19/10.

3 实验验证

为了证明仿真的正确性,同时考虑到实际 WPT 系统耦合器的线圈电流很难超过 160 A,因此仅对系 统小电流下的自感与互感进行验证,进而说明仿真 设置与计算的合理与准确性.此时由于自感与互感 线性度很好,数值不随电流变化而保持恒定.因此实 验中,利用 Rohde & Schwarz ZND 矢量网络分析仪对 自感与互感进行测试,并选取耦合器电感随传输距 离 d 的变化对仿真结果进行验证. 仿真和实验中耦 合器参数如表1所示.此外,为消除个别点的误差, 将前面 5 个传输距离值拓展为 60~240 mm 范围内步 长为 20 mm 的 10 个值,图 10 给出了自感与互感的 测量过程.由于磁导率在110 kHz 以下不随频率变 化,而矢量网络分析仪的测量的最低频率为100 kHz,所以实验测量时将测量的的频点选择为101 kHz. 而为了消除同轴电缆引入的测量误差,可通过 以下测量方法获得互感值.首先,将Tx和Rx按如图 11(a)所示串联连接,可以得到测定的等效电感L_{xt}. 然后,将Tx和Rx之间的连接方式改变为图11(b) 所示方式,得到测量的等效电感L₂,计算互感.

$$M = \frac{L_{x1} - L_{x2}}{4}$$
(10)

(a)自感的测量,此时传输距离为140 mm

(b)互感的测量,此时传输距离为 220 mm 图 10 WPT 系统耦合器电感的测量过程

Fig.10 Measurement of inductance of WPT system coupler

图 12 给出了互感与自感随传输距离变化的仿 真与实验结果比较. 结果显示,自感的仿真值和实验 值之间的最大误差小于 3%,而互感的仿真值与实验 值之间的误差在除了 *d* = 60 mm 外的其他点处都小 于 10%,在 *d* = 60 mm 的误差为 10.9%,主要源自实 验测试中距离测量的精度很难保证,而互感在传输 距离较小时对距离的变化更为敏感.但总体来看,可 以验证数值计算结果的正确性.

图 12 耦合器电感随传输距离变化的仿真与实验结果比较 Fig.12 Comparison between simulation and experimental results of inductance of coupler with transmission distance

4 非线性研究在 WPT 系统周围磁场分析中 的应用

从前面的分析可知,对于不同参数的耦合器,自 感与互感对应的线圈的饱和电流最小为160A,当电 流小于160A耦合器可视为线性设备,这将给耦合 器电路以及周围电磁场的分析带来极大的便利.

接着建立了电动汽车和 WPT 系统的仿真和实验模型,如图 13 所示.实验中电动汽车主要考虑汽车底盘的作用,具体的仿真和实验模型搭建过程以及系统参数可参考文献[15].仿真中,将功率设定为10 kW,此时 Tx 和 Rx 的线圈电流分别为 12.3 A 和 18.2 A. 而在实验中,由于大功率 WPT 系统的搭建往往需要耗费大量的资源以及时间,但借助耦合器的线性特性,无需将功率设定到 10 kW,而是将系统的功率设定为 14.7 W,此时由线性给出了相应的 Tx 和 Rx 的线圈电流分别为 0.47 A 和 0.70 A,这与它们各自的仿真值成正比.接着给出了系统耦合器周围的磁场的仿真和实验测量结果.

对 WPT 系统耦合器附近 z = 0 和 z = -75 mm (如图 14 所示)水平线上的磁场强度进行测量,然后 将实验测量值归一化为输出功率 10 kW 时的值,磁 场强度的仿真值和归一化后实验测量值如图 15 所 示.由图 15 可知,除了最靠近线圈的点以外,其他点 处的磁场强度的相对误差在 20%以内,误差主要是 以下两个原因造成的:1)实验测量时磁场探头的 尺寸不够小,难以准确定位与仿真相同的位置;2) 忽略了除底盘以外车壳其他部分对磁场强度分布的 影响.但是考虑到以电磁干扰或电磁兼容为目的而 进行的测量通常具有较大的不确定性,这种差异是 可以接受的¹¹⁶,因此,磁场强度的仿真值与实验值是 比较吻合的,这也进一步证明了系统耦合器的线性 特性.另外,从图 15 可以看出,WPT 系统周围的磁场 强度随着场点与耦合器距离的增大而快速衰减.

measurement area of magnetic field near the coupler

5 结 论

本文对电动汽车 WPT 系统耦合器的自感与互 感的非线性进行了深入研究,借助数值计算方法,考 虑了耦合器铁氧体板的厚度、线圈与耦合器的间距、 铁氧体板的尺寸以及耦合器的传输距离等 4 个关键 参数对非线性的影响.研究发现:耦合器自感与互感 的非线性特性受这4个参数的影响程度不同,受铁 氧体板的厚度影响最大,接着是线圈与铁氧体板的 间距以及铁氧体板边长,而受传输距离的影响很小. 另外,非线性电感对应的饱和电流与铁氧体板的厚 度、线圈与铁氧体板的间距成正相关,与铁氧体板的 尺寸成负相关,而互感的饱和电流随传输距离的增 大而小幅增大.并针对本文研究的耦合器给出了对 应的最小饱和电流为160A,即线圈电流小于160A 时的 WPT 系统耦合器可视作线性设备,之后通过实 验对仿真结果进行了验证. 针对其他的 WPT 系统耦 合器,可利用文章介绍的电流归算方法得到相应的 最小饱和电流.最后利用耦合器的线性特性对电动 汽车无线充电系统周围的磁场进行了数值和实验分 析,并发现在电动汽车 WPT 系统正常工作时,系统 附近的磁场会随着场点与系统距离的增大迅速衰减.

参考文献

- [1] 王振亚,王学梅,张波,等. 电动汽车无线充电技术的研究进展
 [J]. 电源学报,2014(3):27-32.
 WANG Z Y,WANG X M,ZHANG B,*et al.* Advances of wireless charging technology in electric vehicle [J]. Journal of Power Supply,2014(3):27-32.(In Chinese)
- [2] 黄学良,谭林林,陈中,等.无线电能传输技术研究与应用综述
 [J].电工技术学报,2013,28 (10):1-11.
 HUANG X L,TAN L L,CHEN Z,et al. Review and research progress on wireless power transfer technology [J]. Transactions of China Electrotechnical Society,2013,28 (10):1-11. (In Chinese)
- [3] JUNG G, SONG B, SHIN S, et al. High efficient inductive power supply and pickup system for on-line electric bus [C]//Proceeding 2012 IEEE International on Electrical Vehicle Conference (IEVC). Greenville, SC: IEEE, 2012: 1-5.
- [4] 胡超.电动汽车无线供电电磁耦合机构能效特性及优化方法研究[D].重庆:重庆大学自动化学院,2015:1-16.
 HU C. Research on output performance and parameters optimization

of magnetic coupler for EVs⁻ wireless power supply [D]. Chongqing: College of Automation, Chongqing University, 2015: 1—16. (In Chinese)

[5] 肖湘琴. 中兴新能源汽车充电设施的营销战略研究[D]. 长沙:湖 南农业大学商学院, 2016:14—16. XIAO X Q. Research on the marketing strategy of ZTE's new energy

vehicle charging facilities [D]. Changsha:School of Business,Hunan Agricultural University,2016:14—16. (In Chinese)

- [6] 周翼龙. 基于 V2G 的无线功率传输变换器研究[D]. 柳州:广西 科技大学电气与信息工程学院,2019:1-5.
 ZHOU Y L. Research on wireless power transfer converter based on V2G [D]. Liuzhou:School of Electrical and Information Engineering,Guangxi University of Science and Technology,2019:1-5. (In Chinese)
- ONAR O C, CAMPBELL S, SEIBER L, et al. Oak ridge national laboratory wireless charging of electric vehicles - CRADA report: TM-2016-296 [R]. Oak Ridge:Oak Ridge National Laboratory, 2016:1-20.
- [8] BUDHIA M,COVIC G,BOYS J. A new IPT magnetic coupler for electric vehicle charging systems [C]// IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. Phoenix, AZ: IEEE,2010:2487-2492.
- [9] 唐春森. 非接触电能传输系统软开关工作点研究及应用 [D]. 重 庆:重庆大学自动化学院,2009:7-77.
 TANG C S. Pickup device design of the wireless power supply sys-

tem for electric vehicle [D]. Chongqing:College of Automation, Chongqing University, 2009:7–77. (In Chinese)

[10] 谢帆,张波,丘东元. 基于松散耦合变压器的全桥谐振变换器非
 线性行为分析[J].电力系统自动化,2014,38(3):47—58.
 XIE F,ZHANG B,QIU D Y. Nonlinear behavior analysis of full

bridge resonant converter based on loosely coupled transformer [J]. Automation of Electric Power Systems, 2014, 38 (3): 47–58. (In Chinese)

- [11] BOU-BALUST E, El AROUDI A, FISHER P, et al. Unveiling nonlinear dynamics in resonant inductively coupled wireless power transfer [C] //Proceedings-IEEE International Symposium on Circuits and System (ISCAS). Melbourne VIC: IEEE P, 2014:2612-2615.
- [12] 修自任.无线能量传输的非线性现象研究[D].成都:电子科技大学电子工程学院,2015:4-82.
 XIU Z R. Reseach on the nonlinear phenomena in wireless power transfer [D]. Chengdu:College of Electronic Engineering, University of Electronic Science and Technology,2015:4-82. (In Chinese)
- [13] 陈琛,黄学良,谭林林,等.电动汽车无线充电时的电磁环境及安 全评估[J].电工技术学报,2015,30(19):61-67.
 CHEN C,HUANG X L,TAN L L,et al. Electromagnetic environment and security evaluation for wireless charging of electric vehicles
 [J]. Transactions of China Electrotechnical Society,2015,30 (19):61-67. (In Chinese)
- [14] TDK. Mn-Zn 系铁氧体材质特性 [EB/OL]. https://pdfslide.tips/ documents/-tdk-product-center-20180118-ferritemn-znmaterialcharacteristicszhfm.html,2018-01-18.
- [15] WANG Q D, LI W L, KANG J W, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle [J]. IEEE Transaction on Electromagnetic Compatibility, 2019, 61(6): 1913—1925.
- [16] IEEE Electromagnetic Compatibility Society. IEEE Std 1597.1[™]-2008 IEEE standard for validation of computational electromagnetics computer modeling and simulations[S]. Piscataway: IEEE Press, 2008:1-31.