文章编号:1674-2974(2021)10-0074-11

DOI:10.16339/j.cnki.hdxbzkb.2021.10.009

超大模数变位齿轮--齿条传动瞬态热弹流润滑

郑明1,周长江1+,刘忠明2

(1. 湖南大学 汽车车身先进设计制造国家重点实验室,湖南 长沙 410082;2. 郑州机械研究所有限公司,河南 郑州 450008)

摘 要:针对三峡升船机超大模数变位齿轮-齿条传动润滑设计缺失与过早磨损,开展低 速重载使役状态下传动系统的润滑特性研究.构建变位齿轮-齿条传动系统瞬态热弹流润滑 计算模型,利用多重网格法与 FFT 方法求解各啮合点处的润滑特性参数.分析启动至正常运 行阶段的转速和载荷、变位系数、模数、压力角、材料配副和油膜黏度,对油膜压力、膜厚、齿面 摩擦力与摩擦系数的影响.研究结果发现,齿条啮入瞬间的成膜条件差,滑移速度与摩擦力较 大,易使齿条顶部发生磨损;齿轮副硬材料表面的润滑性能较差;适当增大变位系数、模数、压 力角和黏度可改善润滑性能.

Transient Thermal Elastohydrodynamic Lubrication for Super-modulus Modified Gear-rack Drive

ZHENG Ming¹, ZHOU Changjiang^{1†}, LIU Zhongming²

(1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China;

2. Zhengzhou Machinery Research Institute Co LTD, Zhengzhou 450008, China)

Abstract: Aiming at design loss and premature tooth wear on lubrication of the modified super-large modulus gear-rack in Three Gorges ship lift, the lubrication characteristics of the drive system was investigated under low-speed and overload. A transient thermal-elastohydrodynamic lubrication (TEHL) model was developed for the gear-rack drive system. The transient TEHL model under variable velocity among the line of action is solved by multi-grid method and FFT method. Then, the influence of speed and load, modification coefficient, modulus and pressure angle on the contact pressure, film thickness and tooth surface friction, modification coefficient, modulus and pressure angle during the process from start to normal operation is investigated. The results show that the film thickness becomes thinner and the friction force is larger during the gear engagement stage, which causes the rack top easy to wear. It is found that the harder the surface material, the worse the lubrication performance. When the modification coefficient,

^{*} 收稿日期:2020-12-23

基金项目:国家自然科学基金资助项目(52075153,51775516), National Natural Science Foundation of China(52075153,51775516); 湖南省 重点研发计划项目(2019JJ40020), Hunan Province Science and Technology Plan Fundation(2019JJ40020) 作者简介:郑明(1993—), 男, 安徽亳州人, 湖南大学机械与运载学院博士研究生

[†]通信联系人, E-mail: yangtsezhou@hnu.edu.cn

modulus, pressure angle and viscosity are increased, the lubricating property can be improved.

Key words: Three Gorges ship lift; modified gear-rack; super-large modulus; thermal-elastohydrodynamic lubrication; lubricating property parameters

三峡升船机作为规模最大和技术难度最高的升船机¹¹,由4组超大模数的开式齿轮-齿条机构驱动.齿条设计寿命为35年,总载荷循环周次可达4.22×10⁶次,抬升重量达3000t级,加工精度高,更换困难,是升船机的关键部件.升船机机组低速重载传动易引起齿轮-齿条啮合润滑不良,致使齿面出现磨损与胶合.德国Wollhofen调研报告显示,开式齿轮传动损坏18.2%因润滑不良发生严重磨损或胶合而失效¹².因此,有必要对升船机齿轮-齿条传动的润滑状态进行研究,并通过参数分析优化润滑性能.

根据 Stribeck 曲线齿轮润滑状态可分为全膜润 滑、混合润滑、边界润滑三种¹³.基于 Reynolds 方程和 线接触动压润滑理论, Martin¹⁴对直齿轮齿面的润滑 状态进行研究,引入刚体与等黏度假设得出重载下 的膜厚过薄. Grubin^[5]引入表面弹性变形与变黏度流 体,结合 Hertz 接触模型提出弹流润滑理论(EHL), 得到较为准确的线接触平均膜厚经验公式. 润滑方 程的复杂性与非线性使得求解难度极大, Dowson 等10基于逆解法求出线接触润滑模型的完全数值解. 随着摩擦学理论与试验方法的快速发展,数值求解 的效率与稳定性已不能满足应用, 直接迭代法将表 面弹性变形方程、膜厚方程、黏度与密度方程和 Reynolds 方程联立求解,进行循环迭代,最终收敛到 数值解.对于高速重载等严苛工况,其求解稳定性与 效率不佳,Lubrecht^四将多重网格法引入润滑方程的 求解,极大地提高了求解效率与收敛稳定性.

上述求解基于等温与牛顿流体假设,与润滑油 的实际承载情况差别较大.杨沛然等¹⁸导出润滑力学 中关于非牛顿流体介质的普遍 Reynolds 方程,通过 定义广义牛顿黏度,适用于多种流变模型.现代弹流 润滑模型求解中,考虑非牛顿、热效应与时变性的影 响,对于求解真实表面下混合润滑参数的难度愈来 愈大.Hu 等¹⁰提出统一 Reynolds 方程求解混合润滑 模型,Liu 等¹⁰¹和王文中等¹¹¹分别采用 DC-FFT 方法 求解润滑表面的弹性变形,极大地提高了膜厚方程 求解效率.王优强等¹¹²考虑瞬态效应与热效应,分析 直齿轮线接触下的瞬态热弹流润滑性能,讨论轮齿间油膜的厚度、压力与温度场的变化规律.王文中等^[13]对渐开线斜齿轮非稳态弹流润滑进行分析,发现等主动轮齿根附近和节点位置润滑状态较差.徐彩红^[14]采用等温下的时变弹流润滑模型研究载荷突变对齿轮-齿条传动中的润滑性能影响,发现啮入点为危险点;袁玉鹏等^[15]利用油膜厚度准则研究低速 重载、频繁换向下的开式齿轮-齿条润滑状态.

综上所述,弹流润滑机理的研究日益成熟,但超 大模数变位齿轮--齿条啮合传动中的润滑状态及其 失效预测仍有待完善.作为超大模数齿轮--齿条传动 机构,其模数 62.667 mm,齿宽 810 mm,单节长 4705 mm,采用分节式设计安装,材料为 18CrNiMo7-6,齿 面加工处理为 5 级精度,齿轮--齿条采用正变位传动 (x = 0.5).针对三峡升船机齿条性能评定试验装置启 动至正常运行阶段的转速和载荷等 10 种工况参数, 分别讨论变位系数、模数与压力角等几何参数,材料 配副、油膜黏度等材料参数对油膜厚度、接触压力及 摩擦系数的影响,基于膜厚比与 Stribeck 曲线判定 油膜润滑状态.

1 变位齿轮-齿条润滑模型

正变位齿轮可提高齿根抗弯强度,增大齿面接 触强度和提高齿面耐磨损能力.研究变位齿轮的润 滑性能,以便合理设计润滑方式及优选润滑参数及 性能评估.对于变位齿轮,正变位时,齿廓变厚,齿顶 圆、分度圆与齿根圆直径变大;负变位时,齿廓变薄, 齿顶圆、分度圆与齿根圆直径变大;负变位时,齿廓变薄, 齿顶圆、分度圆与齿根圆直径变小,如图 1(a)所示. 齿条齿形保持不变,对应于不同变位齿轮相啮合的 齿条,其齿廓的厚薄不同.升船机齿轮-齿条传动机 构相比齿轮传动,其变位工况下的啮合角大小恒为 压力角 α,其啮合原理见图 1(b).实际啮合线长 *B*₁*B*₂ 位于理论啮合线上,且啮合点沿 *oz* 轴方向移动;由 齿轮的齿根与齿条的齿顶先啮入(*B*₁ 点),直至齿轮 的齿顶与齿条齿根处啮出(*B*₂ 点).

Fig.1 EHL geometric model of modified gear-rack

齿面各啮合位置的接触可简化为圆柱体与空间 半平面的接触,且其圆柱体的截面半径为图 1(a)中 的 *R*₁,也称啮合点处的当量曲率半径.根据啮合原理 可计算各啮合位置的 *R*₁为

$$R_1 = r_{\rm b1} \tan \alpha + S \tag{1}$$

式中: r_{b1} 为基圆半径,S为啮合点距节点的距离, $S = n\pi r_{b1}(t - t_0)$,其中 n为齿轮转速,t为啮入点至各啮 合点的时间, t_0 为啮入点至节点的时间,式(1)可看 出其当量曲率半径随啮入过程逐渐增大.由齿轮几 何运动关系,可得出两齿面啮合处夹带油膜的卷吸 速度 u 为

$$u = \frac{u_1 + u_2}{2}, u_1 = n\pi R_1/30, u_2 = n\pi r_1 \sin \alpha/30$$

(2)

式中: *u*₁ 与 *u*₂ 分别为齿轮与齿条表面各啮合点沿 ox 方向的滑动速度, *r*₁ 为齿轮的分度圆半径. 其卷吸速 度随轮齿不断啮入逐渐变大,有利于形成弹流润滑 油膜.

2 热弹流润滑控制方程

2.1 通用 Reynolds 方程

齿轮-齿条传动采用线接触方式的非牛顿瞬态 热弹流润滑模型,计算所用 Reynolds 方程¹¹⁶为:

$$\frac{\partial}{\partial x} \left[\left(\frac{\rho}{\eta} \right)_{e} h^{3} \frac{\partial p}{\partial x} \right] = 12u \frac{(\rho^{*}h)}{\partial x} + 12 \frac{\partial(\rho_{e}h)}{\partial t}$$
(3)

式中:p 为油膜压力,h 为油膜厚度,u 为卷吸速度,其 余参数是为了将方程简化为牛顿流体 Reynolds 方程 形式而做的等效处理, ρ^* 为空间等效密度, ρ_e 为时变 等效密度,具体参数计算见方程(4).

$$\begin{aligned} \left| \left(\frac{\rho}{\eta} \right)_{e} &= 12 \left(\eta_{e} \rho_{e}^{'} / \eta_{e}^{'} - \rho_{e}^{'} \right) \\ \rho^{*} &= \frac{\eta_{e} \rho_{e}^{'} \left(U_{b} - U_{a} \right) + \rho_{e} U_{a}}{U_{e}} \\ \rho_{e} &= \frac{1}{h} \int_{0}^{h} \rho dz \\ \rho_{e}^{'} &= \frac{1}{h^{2}} \int_{0}^{h} \rho \int_{0}^{z} \frac{dz^{'}}{\eta^{*}} dz \\ \rho_{e}^{'} &= \frac{1}{h^{3}} \int_{0}^{h} \rho \int_{0}^{z} \frac{z^{'} dz^{'}}{\eta^{*}} dz \\ \frac{1}{\eta_{e}} &= \frac{1}{h} \int_{0}^{h} \frac{dz}{\eta^{*}} \\ \frac{1}{\eta_{e}^{'}} &= \frac{1}{h^{2}} \int_{0}^{h} \frac{z dz}{\eta^{*}} \end{aligned}$$

$$(4)$$

转速较低属于低剪切率情况,可选用 Ree-Erying 流体流变模型进行研究^[7],非牛顿流体的当量黏 度等参数可由流体本构结合层流模型获得.

2.2 油膜厚度方程

各啮合点处考虑齿面弹性变形的膜厚方程^[16]为

$$h(x,t) = h_0 + \frac{x^2}{2R(t)} - \frac{2}{\pi E} \int_{x_m} p(x,t) \ln(x'-x) dx'$$
(5)

 h_0 视为齿面刚性间隙,R为等效曲率半径,E为 两齿面的综合弹性模量,且 $\frac{1}{E} = \frac{1}{2} \left(\frac{1 - \gamma_1^2}{E_1} + \frac{1 - \gamma_2^2}{E_2} \right)$, 其中 $\gamma_{1,2}$ 为齿轮与齿条材料的泊松比.

2.3 润滑油黏度方程

润滑剂的表观黏度 η 随压力和温度的变化而改变,根据 Roelands 黏度关系式⁹

$$\eta = \eta_0 \exp\{(\ln\eta_0 + 9.67) [-1 + (5.1 \times 10^{-9} p + 1)^{z_0} \cdot \left(\frac{1}{T_0 - 138} T - \frac{138}{T_0 - 138}\right)^{-s_0}]\}$$
(6)

式中: η_0 为温度 T_0 时的黏度, Z_0 与 S_0 分别为粘压系数和粘温系数.

2.4 润滑油密度方程

润滑剂作为可压缩流体,其密度ρ随压力和温度变化而改变.其中用可压缩系数描述密度-压力变化关系,用热膨胀系数描述密度-温度变化关系.为方便计算,常采用 Dowson-Higginson 提出的密度方程反映润滑油密度与压力和温度的变化关系^[18]

$$\rho = \rho_0 \left[1 + \frac{0.6 \times 10^{-9} \, p}{1 + 1.7 \times 10^{-9} \, p} - 0.000 \, 65(T - T_0) \right] \tag{7}$$

式中: ρ_0 为温度 T_0 时的初始密度.

2.5 载荷平衡方程

油膜压力须与外载荷 w 平衡,因此在各啮合点

处的接触域中,有载荷平衡方程[18]

$$w(t) - \int_{x_{0}}^{x_{0}} p(x,t) dx = 0$$
 (8)

载荷平衡方程用做压力与膜厚迭代结果准确性 的判据,并且在多重网格法中的底层网格上调整膜 厚增量,使得数值计算结果更稳定.

2.6 温度场方程

线接触热弹流润滑模型中的温度场方程包括流体能量方程,固体热传导方程和固-液界面热流量连续方程.流体能量方程中忽略热辐射,考虑对流换热、热传导、压缩功与热耗散的影响,可导出¹⁶

$$c\left[\rho\frac{\partial T}{\partial t} + \rho u\frac{\partial T}{\partial x} - \left(\frac{\partial}{\partial x}\int_{0}^{z}\rho u dz' + \frac{\partial}{\partial t}\int_{0}^{z}\rho dz'\right)\frac{\partial T}{\partial z}\right] = k_{\rm f}\frac{\partial^2 T}{\partial z^2} - \frac{T}{\rho}\frac{\partial\rho}{\partial T}\left(u\frac{\partial p}{\partial x} + \frac{\partial p}{\partial t}\right) + \eta\left(\frac{\partial u}{\partial z}\right)^2$$
(9)

式中:c为油膜比热容, k_{f} 为油膜热传导系数.固体热 传导方程见式(10),其中下标a,b分别代表两齿面, c为比热容,k为热传导系数,油膜初始温度及齿轮 本体温度采用环境温度 T_{0} = 313 K.

$$\begin{vmatrix} c_{a} \rho_{a} \left(u_{a} \frac{\partial T}{\partial x} \right) = k_{a} \frac{\partial^{2} T}{\partial z_{a}^{2}} \\ c_{b} \rho_{b} \left(u_{b} \frac{\partial T}{\partial x} \right) = k_{b} \frac{\partial^{2} T}{\partial z_{b}^{2}} \end{aligned}$$
(10)

界面热流量连续方程为

$$\begin{aligned} k_{\rm f} \frac{\partial T}{\partial z} |_{z=0} &= k_{\rm a} \frac{\partial T}{\partial z_{\rm a}} |_{z=0} \\ k_{\rm f} \frac{\partial T}{\partial z} |_{z=h} &= k_{\rm b} \frac{\partial T}{\partial z_{\rm b}} |_{z=0} \end{aligned}$$
(11)

3 计算流程与参数

3.1 润滑参数计算流程

针对非牛顿流体的热弹流润滑计算,其核心在 于求解表面剪应力,以便确定等效黏度.齿轮-齿条 传动选用壳牌 GL95 型润滑油,其流变模型可用 Ree-Eyring 流体描述,表面剪应力^[18]为

$$\tau_{a} = \tau_{0} \ln \frac{\sqrt{(u_{a} - u_{b})^{2} + (F_{1}^{2} - F_{2}^{2})} - (u_{a} - u_{b})}{F_{1} + F_{2}}$$
(12)

其中,
$$F_1 = \int_0^h \frac{\tau_0}{\eta} \cosh\left(\frac{z}{\tau_0} \cdot \frac{\partial p}{\partial x}\right) dz$$
,
 $F_2 = \int_0^h \frac{\tau_0}{\eta} \sin h\left(\frac{z}{\tau_0} \cdot \frac{\partial p}{\partial x}\right) dz$.

针对接触压力与膜厚等润滑参数的强非线性耦 合关系,选用4层网格W循环的多重网格法思路进 行求解¹⁶⁹,各层节点数为 31、61、121、241,求解过程 详见图 2,NT = 101,循环判断阈值分别为 $\varepsilon_{px}\varepsilon_{rx}\varepsilon_{w}$ 均为 10⁻³,其中每层的压力求解选用 Gauss-Seidel 松 弛迭代计算,齿面弹性变形的求解采用快速傅里叶 变换方法(FFT)¹¹¹,齿面及油膜温升采用逐列扫描法 在各啮合点处进行求解.

图 2 齿轮-齿条瞬态热弹流润滑计算流程 Fig.2 Transient TEHL calculation flowchart of gear-rack

3.2 材料与工况参数

升船机齿轮-齿条传动通常处于低速重载状态, 启动加速度小,可不考虑冲击.通过试验获取启动阶 段若干时刻的转矩、转速与功率数据,见表 1.以恒转 矩启动至时刻点 9,再以恒转速开始正常运行,整个 启动时间约为 3 s. 单个啮合周期相对于总启动阶段 的时间很短,计算中可不考虑扭矩与转速波动.

齿轮-齿条单个啮合周期的载荷谱见图 3,其中 DTC 为双齿啮合区,STC 为单齿啮合区,HPSTC 和 LPSTC 分别为齿条单啮上界点和下界点,LOA 沿啮 合线方向,用以描述啮合位置.

基于第11组的工况参数与润滑模型计算相关 参数(见表2),可得出非牛顿流体热弹流润滑下油膜

表 1 启动阶段转速与转矩的测试值 Tab.1 Experimental values of speed and torque during start-up

取样时刻点	转矩 /(kN·m)	转速 /rpm	功率/kW
1	0	0	0
2	78.3	0.32	2.6
3	78.7	0.8	6.6
4	79.6	1.15	9.6
5	80.1	1.53	12.9
6	80.1	1.92	16.1
7	86.6	2.46	22.3
8	92.7	2.98	28.9
9	92.8	3.47	33.7
10	250	3.85	100.8
11	449	3.94	185.1

表 2 齿轮-齿条润滑计算的输入参数

Tab.2 Parameters of gear-rack lubrication model

	e e	
	名称	数值
	齿数 z1	16
几何参数	变位系数 x1	0.5
	模数 m/mm	62.667
	压力角 α/(°)	20
	有效齿宽 B/mm	600
材料参数	313 K 时油黏度 η/(Pa·s)	0.655
	313 K 时油密度 ρ/(kg·m ⁻³)	1 076
	油比热容 c/(J·kg ⁻¹ ·K ⁻¹)	2 000
	油热传导系数 k _f /(W·m ⁻¹ ·K ⁻¹)	0.14
	齿轮齿条密度 ρ/(kg·m ⁻³)	7 800
	齿面比热容 c _{a,b} /(J·kg ⁻¹ ·K ⁻¹)	440
	齿面热传导系数 k _{a,b} /(W·m ⁻¹ ·K ⁻¹)	14
	齿面弹性模量 Ea,b/GPa	210
	泊松比 γ _{а,b}	0.28
工况参数	环境温度 T ₀ /K	313
	转矩/(kN·m)	见表1
	转速/(rpm)	见表1

温升,及其与等温膜厚下的计算膜厚值(见图 4),温 升对计算膜厚存在一定影响,考虑热效应的计算膜 厚更为精确.热弹流膜厚与经验式计算结果的比较 见图 5,计算中心膜厚均在 0.5 μm 以上.

Fig.4 Variation of central film thickness and film temperature rise

Zhu 等¹⁹研究得出在较宽速度范围内,当 $R_a = 0.6 \mu m$ 的润滑膜厚比 $\lambda > 1.2(\lambda = h_{min}/R_{RMS})$ 时,表面已进入全膜润滑状态.针对 $R_a = 0.5 \mu m$ 的 5 级精度齿面,当膜厚小于 0.85 μm 时,在啮入时刻即齿条顶部处于混合润滑状态,且一定循环载荷试验后的齿条顶部出现磨损与微点蚀坑.由于卷吸速度和等效曲率半径沿啮合线逐渐增大,致使膜厚沿啮合线逐渐变厚.图 5 可看出经验膜厚与模型计算值存在一定的偏差,原因在于经验式未考虑非牛顿流体热效应对流体剪应变的影响,这将导致速度越高,偏差将进一步增大.

4 结果分析与讨论

4.1 载荷与转速影响

齿轮-齿条机构启动过程中,选取 10 组载荷与 转速工况(见表 1)进行计算油膜参数,并分析启动 过程中齿面的润滑性能. Huang 和 Zhou 等^[20]研究启 动过程中接触副的油膜变化趋势,得出卷吸速度大 于 0.035 m/s 时表面为全膜润滑,故对于测试载荷与 转速而言,5 级精度的齿面几乎全程处于弹流润滑 状态. 而根据 Zhu 等^[10]研究结论,得出齿面膜厚大于 0.85 μm,即齿轮-齿条由启动时刻 6 开始,除初始啮 入阶段外,齿面为全膜润滑状态. 启动过程中轮齿啮 合三个特征点的膜厚与油膜压力的变化见图 6,中 心膜厚 h_e 随转速增大而增大,当油膜压力从时刻点 8 突然增大后,膜厚也开始减小. 先恒转速后过渡至 恒转矩的启动方式决定了油膜压力和膜厚的变化趋 势如图 6 所示.

sample working condition during start-up

当第 10 时刻转速达到额定转速时,即工况为表 1 中的组 11,其油膜压力沿啮合线的变化和各特征 点中心膜厚的分布见图 7.其中 A 为啮入点,B 为节 点,C 为 HPSTC 点,D 为 LPSTC 点,E 为啮出点.油 膜压力变化趋势可由齿面载荷谱和 Hertz 接触半宽 b 简单分析.由于齿条的曲率半径恒定,齿轮-齿条 啮合过程中综合曲率半径 R 较齿轮-齿条啮合时增 加更快,使得相同载荷谱下的接触半宽 b 较大,进而 影响油膜承载区域内润滑参数的变化,b 和 R 的变 化趋势见图 8.由此可见,啮合过程中膜厚分布均出 现颈缩现象,且膜厚由啮入至啮出逐渐增加,与直齿 轮瞬态热弹流润滑¹⁰³不同点是 A 到 B 过程中油膜压 力逐渐降低,且 C 到 D 至 E 的过程中油膜压力降低 的趋势更明显,这与接触半宽 b 的变化相一致.

图 7 沿啮合线油膜压力与特征啮合点膜厚分布 Fig.7 Pressure distribution along LOA and

film thickness of special meshing points

4.2 几何参数影响

变位系数会改变齿轮-齿条传动中重合度大小,

轮齿正变位会缩短啮合线长度,进而改变载荷沿啮 合线的分布,对啮合传动的润滑性能产生影响.图9 (a)和(b)所示,随着变位系数增加,齿条顶部会较晚 进入啮合,各特征点的油膜压力均有所降低,对应的 中心膜厚逐渐增大,进而提高轮齿承载能力.随着变 位系数增加,齿面摩擦力的变化趋于缓和,啮入阶段 摩擦力显著降低,这将有效减弱切向啮入冲击,节点 至变位后的单齿啮合区摩擦力反向增大,啮出阶段 的摩擦力则变化不大.从图9(c)和(d)发现,增大变 位系数可相对降低啮入时刻和单双齿交替啮合时刻 的切向冲击.

对于大模数轮齿而言,改变模数会影响承载能 力及重合度,进而改变齿面载荷分布,对油膜压力、 膜厚与摩擦系数等润滑参数产生影响.如图 10 所 示,随着模数增大,啮合线长度增大,油膜压力显著

降低,且单双齿交替啮合处的压力突变减小,中心膜 厚显著增加,齿面摩擦力与摩擦系数变化趋于缓和, 可有效减弱轮齿啮合过程中的法向与切向冲击.故 增大模数可有效提高轮齿的承载能力,并改善润滑 相关参数的分布.

对于部分重载齿轮传动,标准压力角 20°的轮齿 已经满足不了行业需求,而压力角变化会对齿轮润 滑性能与承载能力产生影响.压力角增大会减小轮 齿啮合过程的重合度,但增大压力角会同时增大等 效曲率半径 R 与卷吸速度,这有利于油膜压力的降 低与膜厚的增加,与图 11(a)中心膜厚变化趋势一 致.轮齿压力角增大,使得半径 R 增加,进而增大接 触半宽,这使得在单齿与双齿啮合区域的油膜压力 显著降低(见图 11).同时因膜厚增加使得剪应变率 相应减小,从而降低摩擦力,有效改善齿轮-齿条啮 合冲击.

4.3 材料参数影响

由图 12 可见, 黏度对润滑性能影响较为显著. 低速重载下,增大黏度有利于形成油膜,随着黏度增 大,膜厚逐渐变厚.由于剪切作用不明显,摩擦系数 变化不大.啮出区域的滑滚比大,黏度变小使得摩擦 系数更小.可见,选择合适的粘度有利于降低啮出区 摩擦,且有利于形成全膜润滑状态.

减缓磨损措施中,表面涂层处理是应用最广泛 且有效的方法,Al₂O₃、TiN 等硬质涂层具有良好的化 学稳定性、抗磨损、抗氧化、耐腐蚀特性被广泛应用. 对于齿面材料进行热处理渗碳工艺可形成有效硬化 层,对 18CrNiMo7-6、42CrMo4V 和 45#钢等硬化层, Al₂O₃和 TiN 等硬质涂层表面进行润滑接触分析,分 别研究启动工况下与稳态服役工况下的齿面润滑 性能,其中各硬化层与涂层材料的力学性能参数见 表 3^[21-23]. 启动过程中,各涂层与硬化层材料的润滑 参数变化趋势一致,其硬度越高,弹性模量越大,致 使油膜压力增加,表面变形减小使得膜厚相对降低, 进而增大摩擦力,如图 13 所示. 由此得出齿轮--齿条 机构启动过程中一般规律,材料越硬,润滑性能越差. 其中 45# 钢与 18CrNiMo7-6 的润滑结果参数几乎一 致,在后面额定工况分析中忽略 45# 钢材料.

表 3 齿面硬化层与涂层参数

Tab.3 Parameters of hardened layer and coating on tooth surface

材料	硬度/ (HV)	弹性 模量/ Gpa	泊 松 比	热传导系 数/(W・ m ⁻¹ ・K ⁻¹)	比热容/ (J·kg ⁻¹ ·K ⁻¹)	密度/ (kg·m ⁻³)
18CrNiMo7-6	480	210	0.28	14.0	440	7800
42CrMo4V	410	190	0.28	14.0	440	7800
45#	350	209	0.269	48.0	450	7890
Al ₂ O ₃	2100	375	0.2	20.0	850	3960
TiN	1800	305	0.22	29.0	710	5430

lubricating property parameters during start-up

对于额定工况下,其齿形参数与润滑相关计算 参数采用表3数据,对于不同材料而言,齿面硬度对 油膜压力影响更大,对膜厚影响较小,从而对齿面摩 擦力影响较大,材料越硬,油膜压力与摩擦力显著增 加(见图14),将产生齿面啮合冲击.同时材料越硬, 可有效减缓表面磨损状况,如何选择齿面材料配副 与涂层类型,应平衡抗磨损与改善润滑性能参数之 间的矛盾.

5 结 论

1)齿轮-齿条机构启动过程中,前半段整个齿面 处于混合润滑状态;后半段,齿条齿顶处于混合润滑 状态,其余齿面处为全膜润滑.载荷与转速的稳定 后,膜厚分布出现颈缩,膜厚沿啮合线逐渐增大.齿 条顶部因滑移速度较大,摩擦力较大,且处于混合润 滑状态,该啮合区易发生磨损. 2)齿轮参数分析表明:变位系数增大,油膜压力 降低且膜厚增大,啮入阶段摩擦系数大幅降低,单双 齿交替处摩擦力的突变减小,轮齿承载能力相对提 高;模数增大,油膜压力显著降低,膜厚增大,摩擦系 数变化大幅降低;压力角增大,单齿与双齿啮合段油 膜压力减小,膜厚增大,摩擦力减小.显然,轮齿参数 优化可有效改善齿面润滑性能,降低啮合冲击.

3)齿面硬化层与涂层可有效提高齿面耐磨能 力,但材料越硬,油膜压力与摩擦力变大,啮合冲击 加剧.因此,需要考虑齿面过硬会提高抗磨损能力, 但会使润滑性能变差.另外,适当增大黏度有利于油 膜形成,可改善润滑条件.

参考文献

- 钮新强,覃利明,于庆奎. 三峡工程齿轮齿条爬升式升船机设计
 [J].中国工程科学,2011,13(7):98—105.
 NIU X Q,QIN L M,YU Q K. The design of gear rack climbing type ship lift of Three Gorges project [J]. Engineering Sciences, 2011,13(7):98—105. (In Chinese)
- [2] LIU H, WAN S L, LI S T. Development of M220 heavy duty open gear oil [J]. Lubricating Oil, 1999, 14(6): 3-5.
- [3] ZHU D, WANG J X, WANG Q J. On the stribeck curves for lubricated counterformal contacts of rough surfaces [J]. Journal of Tribology, 2015, 137(2):021501.
- [4] MARTIN H M. Lubrication of gear teeth [J]. Engineering, 1916,102:119-121.
- [5] GRUBIN A N. Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces [D]. Moscow; Central Scientific Research Institute for Technology and Mechanical Engineering, 1949.
- [6] DOWSON D, HIGGINSON G R. A numerical solution to the elasto hydrodynamic problem [J]. Journal of Mechanical Engineering Science, 1959, 1(1):6–15.
- [7] LUBRECHT A A. The numerical solution of the elastohydrodynamically lubiricated line-and point-contact problem using multigrid techniques [D]. University of Twente, 1987.
- [8] 杨沛然,温诗铸.润滑力学中非牛顿流动的普遍 Reynolds 方程
 [J].力学学报,1991,23(3):283—289.
 YANG P R, WEN S Z. A generalized reynolds equation based on non-newtonian flow in lubrication mechanics [J]. Acta Mechanica Sinica, 1991,23(3):283—289. (In Chinese)
- [9] HU Y Z,ZHU D. A full numerical solution to the mixed lubrication in point contacts [J]. Journal of Tribology, 2000, 122(1): 1–9.
- [10] LIU S B,WANG Q,LIU G. A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses [J]. Wear, 2000,243(1/2):101-111.
- [11] 王文中,王慧,胡元中.润滑接触中弹性变形的快速数值计算
 [J].摩擦学学报,2002,22(5):71-75.
 WANG W Z,WANG H,HU Y Z. Fast computation of surface

deformation in lubricated contact [J].Tribology, 2002, 22(5):71-75. (In Chinese)

- [12] 王优强,衣雪鹃,杨沛然.渐开线直齿轮瞬态微观热弹流润滑分析[J]. 机械工程学报,2007,43(11):146-152.
 WANG Y Q,YI X J,YANG P R. Transient thermal micro elastohydrodynamic lubrication analysis of an involute spur gear [J]. Chinese Journal of Mechanical Engineering,2007,43(11): 146-152. (In Chinese)
- [13] 王文中,操鸿,胡纪滨. 新开线斜齿轮非稳态弹流润滑数值模拟 研究[J]. 摩擦学学报,2011,31(6):604-609.
 WANG W Z,CAO H,HU J B. Numerical simulation of transient elastohydrodynamic lubrication of helical gears [J]. Tribology, 2011,31(6):604-609. (In Chinese)
- [14] 徐彩红,王优强,张同钢,等.载荷时变对齿轮齿条弹流润滑的 影响[J].表面技术,2017,46(6):77-83.
 XU C H, WANG Y Q, ZHANG T G, et al. Influence of load timevarying on elastohydrodynamic lubrication of gear rack [J]. Surface Technology, 2017 46(6):77-83. (In Chinese)
 [15] 袁玉鹏,李权才,刘忠明,等. 低速重载开式齿轮齿条传动润滑
- [15] 某玉腑, 学权力, 对志时, 寺. 似迷重氧力式囚犯囚亲传动调得 状态分析 [J]. 润滑与密封, 2015, 40(5):98—103. YUAN Y P, LI Q C, LIU Z M, *et al.* Analysis on lubrication state of open pinion and rack drive under low-speed and heavy-load [J]. Lubrication Engineering, 2015, 40(5):98—103. (In Chinese)
- [16] 杨沛然. 流体润滑数值分析 [M]. 北京:国防工业出版社, 1998: 1-338.

YANG P R. Numerical analysis of fluid lubrication [M]. Beijing: National Defence Industry Press, 1998; 1–338. (In Chinese)

- [17] KUMAR P, KHONSARI M M, BAIR S. Full EHL simulations using the actual ree –eyring model for shear –thinning lubricants [J]. Journal of Tribology, 2009, 131(1):011802.
- [18] 温诗铸,黄平,田煜,等.摩擦学原理[M].第5版.北京:清华大学出版社,2018:1-484.
 WEN S Z, HUANG P, TIAN Y, et al. Principles of tribology [M]. Fifth edition. Beijing: Tsinghua University Press,2018:1-484. (In Chinese)
- [19] ZHU D, WANG Q J. On the λ ratio range of mixed lubrication [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226(12): 1010–1022.
- [20] HUANG X B,ZHOU C J,LU X J,et al. The mixed regime and wear mechanism of elliptical contact in the start-up process considering interface material properties: A theoretical prediction [J]. International Journal of Mechanical Sciences, 2019, 157–158:60– 74.
- [21] 陈响明. 硬质合金刀具 TiN-TiCN-Al2O3-TiN 多层复合涂层制备与组织性能研究[D]. 长沙:中南大学, 2012.
 CHEN X M. Preparation and microstructure study of TiN-TiCN-Al2O3-TiN multilayer composite coatings [D]. Changsha:Central South University, 2012.
- [22] Metallic materials Conversion of hardness values: ISO 18265 -2013[S]. Geneva: ISO, 2013: 1-85.
- [23] Case hardening steels Technical delivery conditions: DIN EN 10084–2008-06[S]. Brussels: CEN, 2008: 1-20.