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Abstract: The +800 kV ultra high voltage (UHV) long cantilever transmission tower cross—arm structure
belongs to a high—level horizontal long cantilever structure sensitive to the vertical seismic effect. It is urgent to
conduct vertical seismic fragility analysis research on cross—arm structures. To address this, a framework for vertical

seismic fragility analysis, considering multiple performance levels, was proposed for the UHV long cantilever
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transmission tower cross—arm structure. Firstly, a finite element model was established with the UHV long cantilever
transmission tower as the research object, and the vertical dynamic characteristics of the structure were analyzed.
Secondly, based on the stress ratio of the main component at the end of the cross—arm structure, multiple
performance levels for slight, moderate, and severe damage to the cross—arm structure were established. Finally, a
vertical seismic fragility analysis based on a probabilistic seismic demand model was carried out for the cross—arm
structure. The analysis results show that the long cantilever transmission tower is significantly affected by higher—
order vibration modes under vertical earthquake, and the first three vertical modes that contribute significantly to the
vertical response of the structure are the 16th, 26th, and 29th modes, respectively. Under vertical seismic action,
the end main component is the main load—bearing member of the cross—arm structure. Compared with considering the
strength failure of the main component in tension bending at the end of the cross—arm structure, the failure

probability of the cross—arm structure considering the instability failure of the main material in compression bending

is significantly higher under the given vertical seismic intensity.

Key words: UHV long cantilever transmission tower ; cross—arm structure ; vertical earthquake ; multiple perfor-

mance levels; vertical seismic fragility
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Fig.1 Finite element model of long cantilever transmission tower and details of cross—arm structure
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Fig.2 Vertical effective mass participation coefficient of long

cantilever transmission tower
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Fig.3 Vertical vibration mode of long cantilever

transmission tower
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Fig.4 Acceleration response spectrum of selected

vertical earthquakes
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Tab.1 Basic information of vertical earthquakes

5 HuRZ B A TR S ARy aul 41 eliEkm  BYYIPGEY (mesT)
1 Taiwan SMART1(45) 1986 SMART1 CO0 7.30 56.01 309.41
2 Landers 1992 Fort Irwin 7.28 62.98 367.43
3 Big Bear-01 1992 Joshua Tree 6.46 40.99 379.32
4 Northridge—01 1994 Huntington Beach-Lake St 6.69 74.70 315.52
5 Northridge—01 1994 Playa Del Rey—Saran 6.69 24.42 345.72
6 Hector Mine 1999 Big Bear Lake—Fire Station 7.13 61.85 406.70
7 Hector Mine 1999 Pomona—4th & Locust FF 7.13 143.36 384.44
8 Hector Mine 1999 San Bernardino—Mont. Mem Pk 7.13 104.95 358.92
9 Chi~Chi_Taiwan—03 1999 TCU040 6.20 68.23 362.03
10 Chi—Chi_Taiwan—04 1999 CHYO070 6.20 88.91 265.45
11 Chi-Chi_Taiwan—05 1999 TAPO41 6.20 147.34 363.56
12 Chi~Chi_Taiwan—05 1999 TCU098 6.20 95.44 346.56
13 Taiwan SMART1(45) 1986 SMART1 109 7.30 55.99 309.41
14 Denali_Alaska 2002 Fairbanks—Univ of Alaska 7.90 139.11 428.08
15 Bam_Iran 2003 Mahan 6.60 147.3 302.64
16 Chuetsu-oki_Japan 2007 NIGHO4 6.80 96.15 392.08
17 Chuetsu-oki_Japan 2007 YMTO005 6.80 171.83 192.29
18 El Mayor—Cucapah_Mexico 2010 Ocotillo Wells=Veh. Rec. Area 7.20 67.71 361.22
19 Tottori_Japan 2000 EHMO004 6.61 125.63 285.34
20 Tottori_Japan 2000 HYGHI10 6.61 128.51 223.87
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Fig.5 Relationship between damage state and performance

level of long cantilever transmission tower cross—arm structure
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ver transmission tower cross—arm structure
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Fig.6 Vertical seismic fragility analysis diagram of long cantilever transmission tower cross—arm structure
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Fig.7 Stress distribution for cross—arm structure
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Fig.9 Vertical seismic fragility curves
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