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Wind Characteristics at Bridge Site in Mountains Area Based on Large Eddy
Simulation and Their Effects on Bridge Buffeting Response
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Abstract: To study the wind characteristics at a bridge site in the complex mountainous terrain and their effect
on the buffeting response of a long—span bridge, a cable-stayed bridge in a mountainous area was considered as the

engineering background. Firstly, the fluctuating wind field characteristics at the bridge site with enough monitoring
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points were obtained by the large eddy simulation method. Then, the buffeting forces of the bridge were calculated by
the fluctuating wind field via the traditional harmonic synthesis method, the type C suggested in the specification,
and the large eddy simulation method, and their buffeting responses were compared and analyzed. Furthermore, the
effects of non—uniform wind field characteristics at the bridge site on the buffeting response of the bridge were
investigated. The results show that the mean wind speeds, wind attack angles, turbulence intensities, etc., of the
long—span bridge in the mountainous terrain, show obvious non—uniformity along the bridge span, and the
turbulence intensity ratio, fluctuating wind speed spectra, and coherence function are different from the
recommended values in the specification, reflecting the limited applicability of the recommended values in the
specification in complex mountainous wind fields. The buffeting response obtained by the fluctuating wind field
simulated with the harmonic synthesis method is less safe than that obtained by the fluctuating wind field
synchronously monitored by the large eddy simulation method. The buffeting response obtained by the fluctuating
wind field simulated by the spectrum suggested in the specification is unsafe in the vertical displacement but
conservative in the lateral displacement and torsional displacement compared to the results obtained by the large
eddy simulation method. The non—uniform wind speed has significant influences on the vertical, lateral, and
torsional buffeting responses of the main beam, and the non—uniform wind attack angles can also affect the torsional
response of the main beam. The vertical and lateral buffeting response spectra at the mid—span point under the non—
uniform wind speed are obviously higher than those under the uniform wind speed, while the differences of torsional
buffeting response spectra at the mid—span point between the non—uniform wind speed and the uniform wind speed
are not distinct.
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Fig.1 Terrain around the bridge site
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Fig.14 RMS values of displacement of the main beam under different incoming wind directions
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Fig. 15 RMS values of displacement of the main beam under different fluctuating wind fields
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Fig. 16 Effects of non—uniform wind field characteristics on the buffeting response of the main beam

P25, & 16 (e) FTAL, PUAOR T $1 5% 255
T i A 3 S B 22 BE T AN K, 31X 5 8wl (3 7%
I 1) (S R T AT 25 1) S AR AN [ BB B
Bk AR Y NN RUSTE | i R B o WL
A ARRY S GH AR B 2] AT 49 5 KU ) I f
AR o) WG AR 50 I Af A L, 3950 I A ok A

I T SR A i 3R T A 4 B XA SR IR X A
FH T2 20 DX A SR i XU A BB S T 000 —
HAbh B XBCA L 24970 -0.15° TR 3450 RBCA SR
ORI A R IR S T80 R B T B 1 KU
Aii BT 6 AT, T OO T AT 85 19 48 K 2 B0
TOAA O IE 5 T p P13 AT IE XA R B HLE R BOT



LR

WA A B TR AU L DA HE XU B XA e i 1

IR

173

I BRI AR LAY, S B S B T B R AR R T
PR RIBAARY, A FET S TG
HEFPHRIARER 25518 16(a) (b) AT, AHALTAF
TR Jia) (5 A% AN 1] (52 8 , A 2759 IAUTEC S 841 2 v
ARSI S i, (EL A 24 5 KGO HEZ R AT o 2R
AR HE LA PURSR I O $HIR I R
[ {4 2 53¢, 0k i o 57 8 A7 R IS 3% 23 B,
P17 i . o PRI R 3 B0 v 8 ] 32 A% 15 ) IS 24
FIAR ST IR BT 1 4 BT R B, S5 A R 1] 1Y
FI IR AT W) R 5 D0 1] 7 % 335 U6 {000 B2 545 7 B A
Y R 3 B i X AR O 25 5 FHL A (S A 3 iy 2 4> MR

3 T A 58 B R L, B o 2 — ) % AR L A i Y
X FRAL LR A .ty L, 85 b = AN 05 1) R
{3 % i e 73 91 55 4% T 1o B9 55 1 B 1 AR AR X
PRI P g 00 A AR S R B LA AR — B iR
TSR g 26 6 ) A ) PHIR OS5 , AR ST
A B LR A AR, RT3 59
KU H B2 B A A S AR AR (E L AR
SYRGHRAR T 85+ 68 pu) RO [6] IR B 1 B I g
TR KGH A LI, T 25 P A W) 1 35 2 SR A
HH L ZE B0 F AN B, B BG5BT 17 i ik B B i
IO T AT il 2728 A SRR AR — B, U T AR 24 2 X R
it P 5 i) (57 R RN ) (5 B 15 A0 oy SR

1
T, 10'F {
v 10°F ]
fﬁtﬂj 1071 >, 2 Cald 1
Bl 102 F TN WS N S
= ] ) :
= 107 F — desys R S R ,
= 10T - - - AR S R I L)
B 107 — = 5 R S RS A e : - vy
w1070 F -oooe BB RGEARE A I S : Ma=E20 ]
—7 I E 1 1 1
o 0.2 0.3 0.4 0.5 0.6 0.7
W n/Ha
(a) 5 s ) (i 4%
107!
5 — B RE A S R
107 = = - L5 RE IS 5 AU
103k == 5] RUEE 5 RIS

- L UiE | B2 PR g

A0 4R R /(s 71

SR BRI s

4 £

AT FE S 2% L X AT HE RS P S R R 2 iR

107
107 v
PG TAEWATY ;

1076 b A n=0.6167

57 1 1 1 L
1075 0.3 0.4 0.5 0.6 0.7

$i%n/Hz
(b) 5 v i ) 457 %
10?
— FE I RGE AR S B A

10 F = = - ARSI R S A

) == ¥ RGER SR A
107 £ o= YIS RGEAERZ

1071 e WNXeem: 74
o Ny
1072 F n,=0.5512
o2 b 1,=0.648 4
10_4 o — 1 1 1 1
0.2 03 0.4 05 0.6 0.7
A n/Hz,

() B P RS
B17 & EH Rk

Fig. 17 Buffeting response spectra at the mid—span point of the main beam
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