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Vehicle Object Detection Method for Low—=light Environment
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Abstract: In the field of intelligent transportation systems and urban security, it is crucial to obtain accurate
information of vehicles. Vehicle-related information can be directly obtained through visual recognition means such
as video or images. However, in low=light environments, the image brightness and contrast decrease, the noise level
increases, and the image features are prone to loss. These problems lead to a significant reduction in the detection
accuracy of vehicle detection algorithms. Therefore, we propose a vehicle detection method based on low=light image
enhancement and an improved object detection algorithm. The low—light image was first enhanced using the image

enhancement algorithm ZeroDCE to improve the image brightness. Then, the improved AFF-YOLO object detection
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algorithm is utilized to perform vehicle detection on the enhanced image. Finally, the proposed method is tested on a

vehicle dataset, and the vehicle detection accuracy under different low—light levels is analyzed. The results show that

the proposed method can effectively improve the vehicle detection accuracy. Compared with low=light images,

mAP@Q.5 of the enhanced images improved by 4.9% to 94.7%. As the illumination intensity decreases, the object

detection accuracy of the enhanced image improves more significantly. The research results can provide a reference

for vehicle detection in low=light environments.
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Fig.1 Scenario of the application of vehicle detection
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Fig.2 Flowchart of vehicles detection
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Fig.4 Low-light image enhancement process
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Fig.5 Illustration of pixel adjustment curves
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Fig.9 Illustration of camera installation location
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Tab. 2 Image quality assessment metrics under different
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Tab.3 Comparison of different low-light image enhancement algorithms
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Tab.4 Object detection results before and after improve-

ment of YOLO
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Tab.5 Object detection results under different

low light levels
mAP@0.5
) S G & 1% FF
) e . -
%o o WEEY: YOLOVT
YOLO
A, 0.874 0.925
1 17.34~32.27
ZeroDCE 0.932 0.941
ARHEE 0.911 0.942
2 32.28~45.96
ZeroDCE 0.941 0.949
AR 0.925 0.932
3 46.13~69.75
ZeroDCE 0.948 0.955
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Fig.12 Heatmaps produced by GradCAM
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