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摘 要：在智慧交通系统和城市安全领域中，准确获取车辆信息至关重要 . 通过视频或图

像等视觉识别手段可以直接获取车辆相关信息 . 然而，在低光照环境下，图像亮度和对比度降

低、噪声增加、图像细节特征易丢失，这些问题导致车辆目标检测算法的精度大大降低 . 为此，

提出了一种基于低光照图像增强算法和改进目标检测算法的车辆检测方法 . 首先，利用图像

增强算法 ZeroDCE对低光照图像进行增强，以提升图像亮度； 然后，利用改进的 AFF-YOLO 目

标检测网络对增强后的图像进行车辆检测；最后，将本文方法在车辆数据集上进行测试，并分

析不同低光照等级对于车辆检测精度的影响 . 结果表明，本文方法能够有效提升车辆目标检

测的精度，与低光照图像相比，增强后图像的目标检测精度 mAP@0.5 提升了 4.9%，达到

94.7%；而且光照强度越低，增强后图像的目标检测精度提升越显著 . 研究成果可为低照度环

境下的车辆检测提供参考 .
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Abstract：In the field of intelligent transportation systems and urban security， it is crucial to obtain accurate 
information of vehicles. Vehicle-related information can be directly obtained through visual recognition means such 
as video or images. However， in low-light environments， the image brightness and contrast decrease， the noise level 
increases， and the image features are prone to loss. These problems lead to a significant reduction in the detection 
accuracy of vehicle detection algorithms. Therefore， we propose a vehicle detection method based on low-light image 
enhancement and an improved object detection algorithm. The low-light image was first enhanced using the image 
enhancement algorithm ZeroDCE to improve the image brightness. Then， the improved AFF-YOLO object detection 
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algorithm is utilized to perform vehicle detection on the enhanced image. Finally， the proposed method is tested on a 
vehicle dataset， and the vehicle detection accuracy under different low-light levels is analyzed. The results show that 
the proposed method can effectively improve the vehicle detection accuracy. Compared with low-light images， 
mAP@0.5 of the enhanced images improved by 4.9% to 94.7%. As the illumination intensity decreases， the object 
detection accuracy of the enhanced image improves more significantly. The research results can provide a reference 
for vehicle detection in low-light environments.
  Key words：vehicle detection；computer vision；low light environment；image enhancement；object detection

车辆检测在智慧交通系统以及城市安全等领域

发挥着重要作用［1-2］. 现有计算机视觉技术难以准确

识别复杂环境下的车辆，尤其在夜间或恶劣天气条

件下，其识别效果更差，这严重影响了车辆检测的准

确性和可靠性 .
初期的车辆目标检测研究是基于经典的图像处

理算法，如背景差分法［3］、帧间差分法［4］、模板匹配

法［5］和光流法［6］等 . 然而，以上基于传统图像处理技

术的车辆识别方法对环境很敏感，在复杂场景下的

鲁棒性较差［7］. 近年来，随着深度学习的快速发展，

基于卷积神经网络（Convolutional Neural Network，
CNN）的目标检测算法得到广泛关注，具有检测精度

高且鲁棒性强的优点 . Zhang等［8］利用Faster R-CNN
对 8 种类型的车辆进行目标检测，并利用多目标追

踪算法实现车辆位置追踪 . Ge等［9］基于多摄像头融

合和 YOLOv4 算法实现了全桥面车辆位置识别 . 
Zhou等［10-11］利用 Faster R-CNN 识别 9种不同车辆的

类型、位置和行驶轨迹，并利用改进的压缩感知算法

进行车辆位置追踪 . Zhu等［12］利用YOLOv4进行车辆

目标检测，并通过二维识别框和三维识别框之间的

关系重建车辆三维识别框，然后结合相机标定结果

获取车辆位置和尺寸 . 上述基于深度学习的目标检

测算法大多是针对正常光照条件下的车辆检测，难

以适用于低光照条件［13］. 相比于正常光照下拍摄的

图像，低光照图像存在亮度低、对比度低、噪声水平

高以及图像细节特征丢失的问题［14］，这些问题严重

影响了目标检测精度 .
低光照图像增强技术是通过提升图像亮度和对

比度来提高图像质量，同时尽量抑制图像噪声的放

大和伪影的产生［15］. 目前，该技术已被广泛应用于摄

影、自动驾驶和安防等领域［16］. 低光照图像增强算法

分为传统方法和基于深度学习的方法 . 传统方法分

为直方图均衡法［17］、伽马矫正法［18］和基于Retinex理
论［19］的方法，这些方法存在鲁棒性差、容易丢失图像

细节、容易产生伪影和导致颜色失真等问题 . 近年

来，随着深度学习算法的快速发展，基于数据驱动的

低光照图像增强方法引起了广泛关注［20］. 基于深度

学习的低光照增强算法可分为 5类：监督学习、半监

督学习、无监督学习、强化学习和零次学习［20］. 监督

学习依赖成对的低光照和正常光照图像进行训练，

例如 LLNet 算法 . 由于这种成对的图像获取困难并

且在成对数据上训练的网络的泛化能力有限，一些

学者提出了半监督学习、无监督学习和强化学习的

低光照图像增强算法 . 然而，半监督学习和无监督学

习存在训练不稳定和颜色偏移的问题，而强化学

习［21］存在难以设计合理奖励机制的问题 . 为此，有学

者提出了零次学习 . 零次学习不需要成对的数据，可

以 直 接 从 测 试 图 像 学 习 ，例 如 ZeroDCE（Zero-
reference Deep Curve Estimation）网络［22］通过特殊的

损失函数来评估图像增强的质量并基于此引导网络

的训练 . ZeroDCE 网络主要作为单独的底层视觉任

务用于提升低光照图像的亮度和图像质量，用于低

照度环境下车辆目标检测的研究相对较少 .
针对低照度环境下车辆目标检测精度低的问

题，本文提出了一种结合低光照图像增强算法和改

进目标检测算法的车辆检测方法，实现低光照环境

下车辆的高精度检测 . 首先，在目标检测网络之前引

入低光照图像增强算法 ZeroDCE 作为前处理，以提

升图像的亮度和对比度； 其次，将增强之后的图像

输入到 AFF-YOLO 网络中进行车辆检测； 最后，在

车辆数据集上验证了本文方法的可行性，并分析了

不同低光照等级对目标检测精度的影响 . 研究成果

可为低照度环境下的车辆检测提供参考 .
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1   车辆检测的基本流程

针对低光照环境下车辆检测准确度下降的问

题，本文提出了一种基于低光照图像增强算法的车

辆目标检测方法 . 图 1为车辆检测的应用场景，通过

交通摄像头获取交通流视频，并在图像中设定一个

虚拟检测区域，仅对该区域内的车辆进行分析 .

基于低光照图像增强的车辆检测流程如图 2所

示，主要包括 2个部分，即低光照图像增强和车辆目

标检测 . 在获取交通流图像后，将图像输入低光照增

强模块，通过 ZeroDCE 算法提高图像的亮度和对比

度 . 然后，将增强后的图像输入车辆目标检测模块，

该模块的核心是改进的目标检测算法 AFF-YOLO. 
首先在 YOLOv7 中引入注意力特征融合模块，该模

块融合不同尺度的图像特征，能够提升网络检测多

尺度目标的能力；然后将经过增强的图像输入AFF-
YOLO目标检测网络以实现车辆检测 .

2   低光照图像增强

2.1   ZeroDCE网络结构

ZeroDCE网络是通过逐像素曲线调整的方式进

行低光照图像增强［23］. 具体来说，将低光照图像输入

到ZeroDCE网络，网络输出每一个像素的调整参数，

然后利用调整参数对每一个像素的灰度值进行多次

调整，得到增强后的图像 .
图 3 为 ZeroDCE 的网络结构 . 网络共有 7 层，每

层都包含若干 3×3 大小的卷积核，卷积步长（stride）

取 1，边界填充大小（padding）取 1. 由于 ReLU（Recti⁃
fied Linear Unit）函数具有较高的计算效率和梯度传

播的稳定性，有助于网络的快速收敛，因此网络的前

6 层采用 ReLU 激活函数 . ZeroDCE 的最后一层采用

Tanh激活函数，该函数能够有效地将网络的输出规

范到期望的范围内 . 将低光照图像输入到网络中，经

过多层卷积之后，网络输出图像中每个像素点的曲

线调整参数，其中每个参数具有 24 个通道，即调整

参数大小为 w×h×24. 其中，曲线调整参数的 24 个通

道可以分为 3组，分别对应低光照图像的R、G和B颜

色通道，每个颜色通道具有 8组数据，对应后续 8个

迭代调整阶段 .

得到曲线调整参数后，利用该参数对低光照图

像灰度值进行迭代，迭代公式如式（1）所示：

LE ( I ( x)；α) = I ( x) + αI ( x)[ ]1 - I ( )x （1）

图1   车辆检测应用场景

Fig.1   Scenario of the application of vehicle detection

图2   车辆检测流程图

Fig.2   Flowchart of vehicles detection

图3   ZeroDCE网络结构及曲线调整参数估计过程

Fig.3   Architecture of ZeroDCE and the process of 
curve adjustment parameter estimation
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式中：x为像素点坐标；I（x）为对应位置的像素值；α

为像素点坐标和颜色通道的曲线调整参数，且 α∈
［-1，1］；LE（I（x）； α）为对输入像素值 I（x）进行迭代

的结果 .
根据式（1），对低光照图像进行 8 次迭代，得到

增强后的图像，其图像增强过程如图 4所示 . 假设 8
次迭代的 α 均为 0.3，相应的像素调整曲线如图 5 所

示 . 从图 5 可以看出，随着迭代次数的增加，像素灰

度值能够被映射到较高区间，即达到了图像增强的

效果 .

2.2   ZeroDCE损失函数

ZeroDCE 算法设计了独特的无参考损失函数，

不需要任何配对或非配对数据，相较于其他低光增

强算法更为轻量和高效 . 这些损失函数包括以下 4
个关键部分：

1） 空间一致性损失函数，确保在图像增强后图

像的空间结构（如边缘和纹理）得到保留，避免因图

像增强产生空间失真 . 其表达式如式（2）所示：

Lspa = 1
K ∑

i = 1

K ∑
a ∈ Ω ( i)( )|| -Yi - -Y a

i - || -Ii - -
I a

i

2
（2）

式中：K为图像中 4像素×4像素的局部区域的数量；

Ω（i）是以区域 i为中心的上下左右 4个邻域；
-Yi 和

-
Y a

i

分别为增强后图像中区域 i 及其 4 个邻域的平均灰

度值；
-Ii 和

-
I a

i 分别为原始低光照图像中区域 i 及其 4
个邻域的平均灰度值 .

2） 曝光控制损失函数，用于调整图像的曝光水

平，使增强后的图像达到适当的亮度水平，避免过曝

光或欠曝光 . 其表达式如式（3）所示：

Lexp = 1
M ∑

k = 1

M

||-Yk - E （3）
式中：M 为图像中 16 像素×16 像素的不重叠区域的

数量；
-Yk 为局部区域的平均灰度值；E为视觉效果较

好情况下的图像曝光水平，取为0.6.
3） 颜色稳定性损失函数，用于保持图像的颜色

稳定性，以确保增强过程中图像的颜色不会发生不

自然的变化 . 其表达式如式（4）所示：

ì

í

î

ïïïï

ïïïï

Lcol = ∑
∀( p，q ) ∈ ε

( )-
Jp - -

Jq
2

ε = { }( )R，G ，( )R，B ，( )G，B
（4）

式中：（p，q）代表一对图像颜色通道，即（p，q）∈｛（R，

G），（R，B），（G，B）｝；
-
Jp 和

-
Jq 分别为 p通道和 q通道的

图像平均灰度值 .
4） 光照平滑度损失函数，用于保证图像增强过

程中光照变化的平滑性，避免图像出现不自然的光

照突变 . 其表达式如式（5）所示：

ì

í

î

ïïïï

ïïïï

L tvA = 1
N ∑

n = 1

N ∑
c ∈ ξ

( )|| ∇∇x Ac
n + || ∇∇y Ac

n

2
，

ξ ∈ { }R，G，B
（5）

式中：N为迭代次数；∇∇x和∇∇y表示 x和 y方向上的图像

梯度算子；Ac
n 为第 n次迭代时对应图像颜色通道 c的

像素调整参数，c分别为R、G和B通道 .
将上述的 4个损失函数进行组合，构成ZeroDCE

网络的总损失函数，如式（6）所示：

L total = w1 ⋅ Lspa + w2 ⋅ Lexp + w3 ⋅ Lcol + w4 ⋅ L tvA
（6）

式中：w1、w2、w3和w4为平衡各项损失值的权重，其取

值分别为1、10、5和200.
在 ZeroDCE 图像增强模块训练时，使用 SICE

（Scene Illumination and Contrast Enhancement）多曝

图4   低光照图像增强过程

Fig.4   Low-light image enhancement process

图5   像素调整曲线

Fig.5   Illustration of pixel adjustment curves
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光图像数据集 . SICE 数据集包含了 589 个不同场景

下的图像，其中包括各种不同曝光程度的图像和相

应的正常光照图像 . 在该数据集训练 100 个 Epoch
后，ZeroDCE网络的损失值收敛，得到可用于车辆目

标检测前处理的图像增强模型 . 训练时采用Adam优

化器，批大小（batch size）取 8，学习率取 0.000 1，权重

衰减因子（weight decay）取0.000 1.

3   低光照目标检测

3.1   AFF-YOLO网络

YOLOv7 是 2022 年提出的 YOLO 系列目标检    
测算法之一，在5~160 帧/s范围内的检测速度和准确

度超过了其他目标检测算法［24］. 因此，本研究以      
YOLOv7为基础框架，提出了 AFF-YOLO 网络，通过

添加注意力特征融合（Attentional Feature Fusion，
AFF）模块，来解决多尺度目标检测的问题 .

AFF-YOLO 的基本结构由输入（input）、骨干网

络（backbone）和头部（head）组成 . 其中骨干网络用

于提取图像中的多尺度特征，头部用于对骨干网络

提取的特征进行进一步处理并根据图像深层特征预

测目标位置和类别 .
3.2   注意力特征融合

多尺度通道注意力模块（Multi-scale Channel At⁃
tention Block，MS-CAB）可以融合图像的局部和全局

特征，缓解目标检测过程中存在的目标尺度变换问

题 . 基于 MS-CAB 模块设计迭代 AFF 模块，并利用

AFF取代原有YOLO的特征融合模块，从而实现不同

网络层特征的融合 . 改进的 YOLOv7 网络见图 6，所
引入的MS-CAB模块以及AFF模块见图7.

3.3   网络训练

UA-DETRAC［25］是车辆多目标检测的大型数据

集 . 该数据集中共标注了包括轿车、公共汽车、面包

车和其他特殊车辆在内的 121 万个目标，并且考虑

了 4种环境，即多云、夜间、晴天和雨天 . 数据集示意

图如图8所示 .
在 UA-DETRAC 中随机选取 6 567 张图片作为

训练集，记为 UA-DETRAC_train. 在 UA-DETRAC_
train上采用相同的超参数分别训练YOLOv7和AFF-
YOLO. 训练轮数（epoch）取 100，批大小取 32. 训练过

程所采用的其他超参数为：采用随机梯度下降

（SGD）优化算法，初始学习率取 0.01，权重衰减因子

图6   改进的YOLOv7网络

Fig.6   Improved YOLOv7 network

                          （a）MS-CAB                          （b）AFF
图7   MS-CAB模块和AFF模块

Fig.7   MS-CAB block and AFF block
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为 0.000 5，并且训练过程中采用随机缩放和裁剪、随

机旋转和反转、随机亮度调整和马赛克图像增强等

技术对数据集进行增强 . 训练所采用的配置为：操作

系 统 为 64 位 Windows10 21H2，CPU 为 Intel i7-
9700K@3.6GHz，GPU为NVIDIA TITAN RTX；软件环

境为：Python 3.8.5、PyTorch 1.12.1以及CUDA 11.2.

4   结果分析

4.1   测试数据集

在长沙市绕城高速某处架设高清相机拍摄交通

流，来验证本文方法的可行性和识别准确性 . 相机架

设位置如图 9所示 . 采用的拍摄设备为Nikon D5600
相机，配备有一个AF-S DX 18-200 mm镜头，能够以

60帧/s的速度获取 1 920像素×1 080 像素的视频 . 为
了获取不同亮度等级的交通流图像，拍摄时间从下

午 6点持续到晚上 9点 . 将交通流视频分帧获取车辆

图像，从中选取 2 427张图像作为测试集，并人工标

注车辆真实位置 .

为了分析不同低光照程度对图像质量和目标检

测的影响，将所有测试集图像从 RGB 空间变换到

HSV空间以获取图像的平均亮度值，并利用 k-means

聚类算法将所有图像划分为 3 组，其平均亮度值如

图 10 所示 . 由图 10 可知，3 组图像整体都处于低光

照状态，并且低光程度由等级1至等级3递减 .

4.2   低光照图像增强结果

将测试的低光照图像输入 ZeroDCE网络进行图

像增强，其结果如图 11所示 . 从图 11可以看出，经过

图像增强后，亮度和对比度更高，图像整体视觉效果

明显优于原始图像，且图像中车辆目标的特征更加

突出 .

为了定量评估图像增强的有效性，选用 PIQE
（Perception-based Image Quality Evaluator）和基于深

度学习的 MUSIQ（Multi-scale Image Quality Trans⁃
former）2种无参考图像质量评价指标对低光照图像

和增强后的图像进行测试，结果如表 1所示 . 图像评

价指标 PIQE 越小，表示图像的质量越高，反之质量

越低；而 MUSIQ 指标越大，表示图像质量越高 . 从   
表 1可以看出，经过图像增强后，图像平均PIQE值由

                     （a）相机架设位置                     （b）交通流图像

图9   相机架设位置及交通流图像示意图

Fig.9   Illustration of camera installation location 
and traffic flow image

图10   图像亮度分布

Fig.10   Distribution of image brightness

                                （a）低光照图像           （b）ZeroDCE增强图像

图11   低光照图像及图像增强结果

Fig.11   Low-light images before and after enhancement

图8   UA-DETRAC数据集

Fig.8   UA-DETRAC dataset
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14.05 降至 6.84，而 MUSIQ 指标由 23.37 升至 27.50，
表明图像增强算法能够有效提升真实交通场景图像

的质量 .

不同低光照程度对图像质量的影响如表 2 所

示 . 可以看出，低光照图像增强算法对不同低光照等

级下的图像质量均有明显的提升 . 在低光照等级 1
的图像上，经过增强后的 PIQE 指标下降最为明显，

而在低光照等级 3 的图像上，经过增强后的 MUSIQ
指标提升最为明显，增量达到7.05.
4.3   目标检测结果

为了说明本文方法的优势，首先对比了 8 种不

同增强算法的性能，从增强算法对目标检测精度的

提升效果、算法的参数量和运行速度三个方面进行

对比，结果如表 3 所示 . 其中，目标检测精度指标选

用交并比（Intersection over Union，IoU）为 0.5 时的平

均精度均值（Mean Average Precision，mAP）［26］. 由表 3
可知，不论是采用 YOLOv7 或 AFF-YOLO 进行目标

检测，ZeroDCE 的增强效果在所有方法中均相对较

好，并且 ZeroDCE 具有参数量少、计算速度快等

优势 .

从表 3中可知，利用YOLOv7对原始低光照图像

进行目标检测时，得到的 mAP@0.5 为 0.898，而经过

ZeroDCE 增强算法处理后，mAP@0.5 值达到 0.938，
提高了 0.04. 在利用 ZeroDCE增强的基础上，再利用

改进 AFF-YOLO 得到的 mAP@0.5 值为 0.947，提高

了 0.049. 由此表明，ZeroDCE增强算法对目标检测精

度有很好的提升效果 .
图像中的车辆目标根据其大小可以分为小尺

度、中等尺度目标和大尺度目标，测试集中只有中等

尺度和大尺度目标，相应的检测结果如表 4所示 . 从
表中可知，使用 ZeroDCE 和 YOLOv7 时，中等尺度目

标的检测精度由 0.357 提升至 0.570，提高了 0.213；

在 ZeroDCE 基础上使用改进的 AFF-YOLO 时，相较

于 YOLOv7 在低光照图像的检测结果，检测精度从

0.357提升到 0.677，提升了 0.32. 由此表明，本文方法

对于中等尺度目标检测精度的提升效果更加显著，

而对于大尺度目标由于检测相对容易，所以提升效

果有限 .
同时，将图像根据低光照程度分为三个等级，不

同低光照等级的车辆目标检测结果，如表 5所示 . 利
用 YOLOv7 作为目标检测模型时，在低光照等级 1
上，ZeroDCE 增强将 mAP 值提升了 0.058，在低光照

等级 2和 3上，ZeroDCE增强仅将mAP值提升了 0.03
和 0.023. 由此表明，在一定程度上光线越暗，图像增

表1   图像质量评价指标

Tab.1   Image quality assessment metrics

低光照图像增强算法

不增强

ZeroDCE

PIQE
14.05
6.84

MUSIQ
23.37
27.50

表2   不同低光照等级下的图像质量评价指标

Tab. 2   Image quality assessment metrics under different 
low light levels

低光照

等级

1

2

3

亮度范围

17.34~32.27

32.28~45.96

46.13~69.75

低光照图像

增强算法

不增强

ZeroDCE
不增强

ZeroDCE
不增强

ZeroDCE

PIQE
14.73
5.11

13.82
8.68

12.94
7.24

MUSIQ
21.73
25.50
23.65
26.74
26.72
33.77

表3   不同低光照图像增强算法的对比

Tab.3   Comparison of different low-light image enhancement algorithms

低光照图像增强算法

原始低光照图像

DeepUPE
EnlightenGAN

MBLLEN （SynWithNoise）
RUAS （UPE）

SCI （Easy）
STARDCE （VE_LOL）

URetinexNet
ZeroDCE

mAP@0.5
YOLOv7

0.898
0.898
0.898
0.913
0.896
0.910
0.919
0.927
0.938

AFF-YOLO
0.931
0.922
0.945
0.939
0.919
0.928
0.943
0.947
0.947

参数量

—

0.594 4 M
8.637 0 M
0.450 0M
0.003 4 M

258
0.027 5 M
0.340 1 M
0.079 4 M

平均处理时间/（s∙张-1）

—

0.109 6
1.459 8
0.936 5
0.679 4
0.658 4
0.178 8
0.995 1
0.168 9

年份

—

2019
2019
2018
2021
2022
2021
2022
2020

注：1. 括号中为训练采用的数据集或网络结构形式；2. M为百万（Million）的缩写 .
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强算法对目标检测的提升效果越明显 .

最后通过图像热力图来测试 ZeroDCE前处理对

目标检测的影响 . 利用 GradCAM（Gradient-weighted 
Class Activation Mapping）对 低 光 照 图 像 和 经 过      
ZeroDCE 增强的图像在 YOLO 中的特征信息进行可

视化，如图 12 所示 . 红色区域表示该部分的特征对

最终的目标检测结果有较大的贡献，黄色区域表示

该部分对目标检测结果的贡献次之，蓝色区域表示

该部分对目标检测结果的贡献较小，可以视为冗余

特征 . 由图 12 以及其中的红色标识框可以看出，相

比低光照图像，经过 ZeroDCE 增强之后的图像的热

力图中错检和漏检的目标更少且红色区域的颜色更

深，即在增强图像中网络能更加关注到车辆目标的

特征 .

5   结 论

针对低光照环境下车辆检测精度低的问题，本

文提出了一种基于低光照图像增强算法和改进目标

检测算法的车辆检测方法，得出以下结论：

1） ZeroDCE低光照图像增强算法可显著改善低

光照环境下的图像质量，为低光照环境下的车辆目

标检测提供了基础 .
2） 低光照环境中，基于深度学习的目标检测算

法精度大幅下降，而低光照图像增强算法可以有效

地提升目标检测精度，并且对中、小尺度目标检测精

度的提升更加明显 .
3） 提出了注意力特征融合 YOLO 算法，通过融

合图像的局部和全局特征，缓解了目标检测过程中

存在的多尺度目标检测困难的问题 .
本文方法不仅提高了低光照环境下的图像质

量，还提升了车辆检测的准确性和鲁棒性 . 研究结果

对于智慧交通系统、自动驾驶技术以及安全监控领

域具有重要的借鉴意义 . 在未来的研究中，会将本文

方法应用于更复杂场景下的车辆检测 .
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