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Abstract: Traditional data association—based simultaneous localization and mapping (SLAM) methods are
prone to causing mismatches between observations and targets, leading to a decrease in pose estimation accuracy.
This paper proposes a 3D LIDAR SLAM method for cluttered environments by combining column feature extraction
method and random finite set theory based on sequential Monte Carlo implementation. Firstly, stable column features

are extracted from segmented point clouds using the M—estimator sample consensus algorithm to obtain static

% Wi H H#3:2024-01-05
EE&WB : R ARS8 5 0 H & LT i 50 B (este2021jsex—dxwiBX0023) , Chongging Technology Innovation and Application
Development Project (cstc2021jsex—dxwtBX0023)
EF RS (1994—) I IR IR AL AT A
T IFIE RN E-mail : fuchunyun@cqu.edu.cn



55 2 3] BOGSE A TR AR E -5 BEHLAT BRAE A0 SLAM J5 iR F5E 65

surviving features and new features within a single frame of point cloud data. Subsequently, two types of features are
introduced into the RB-PHD-SLAM (Rao—Blackwellized—probability hypothesis density—simultaneous localization
and mapping) framework, and the sequential Monte Carlo method is employed to achieve inter—frame propagation of
the vehicle’ s trajectory probability density and the map posterior. This enables simultaneous estimation of
environmental features and vehicle poses. Evaluation results based on both simulation dataset and KITTI dataset
show that, compared with the classical FastSLAM algorithm, the proposed method improves the vehicle positioning
accuracy by 44.99%, and reduces the average estimation error of feature location and feature number by 49.24% and

56.22%, respectively. These results indicate that the proposed method significantly improves the accuracy and

robustness of SLAM, and helps to ensure safe operation of intelligent vehicles.

Key words: intelligent vehicle; position measurement ; feature extraction ; random finite sets; sequential Monte
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