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摘 要：传统的基于数据关联的同时定位与建图（simultaneous localization and mapping，
SLAM）方法易引起观测与目标之间的误匹配，进而导致位姿估计精度下降 . 结合柱状特征提

取方法和随机有限集理论，提出一种基于序贯蒙特卡罗实现的车辆 3D 激光 SLAM 方法 . 利用

M 估计抽样一致性算法从分割后的点云中提取稳定的柱状特征，捕获单帧点云中的静态存活

特征和新生特征；在 Rao-Blackwellized-概率假设密度同时定位与建图（Rao-Blackwellized-
probability hypothesis density-simultaneous localization and mapping，RB-PHD-SLAM）框架中引

入两种特征，并运用序贯蒙特卡罗方法完成车辆轨迹概率密度和地图后验强度在帧间的传

递，实现对环境特征和车辆位姿的同时估计 . 模拟数据集和 KITTI 数据集试验结果显示，与经

典的 FastSLAM 算法相比，本文算法使车辆定位精度提升 44.99%，并使环境特征位置估计和环

境特征数量估计的平均误差分别降低 49.24%和 56.22%，显著提升了 SLAM 的运行精度和鲁棒

性，有助于保障智能汽车的运行安全 .
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Abstract：Traditional data association-based simultaneous localization and mapping （SLAM） methods are 
prone to causing mismatches between observations and targets， leading to a decrease in pose estimation accuracy. 
This paper proposes a 3D LiDAR SLAM method for cluttered environments by combining column feature extraction 
method and random finite set theory based on sequential Monte Carlo implementation. Firstly， stable column features 
are extracted from segmented point clouds using the M-estimator sample consensus algorithm to obtain static 
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surviving features and new features within a single frame of point cloud data. Subsequently， two types of features are 
introduced into the RB-PHD-SLAM （Rao-Blackwellized-probability hypothesis density-simultaneous localization 
and mapping） framework， and the sequential Monte Carlo method is employed to achieve inter-frame propagation of 
the vehicle’s trajectory probability density and the map posterior. This enables simultaneous estimation of 
environmental features and vehicle poses. Evaluation results based on both simulation dataset and KITTI dataset 
show that， compared with the classical FastSLAM algorithm， the proposed method improves the vehicle positioning 
accuracy by 44.99%， and reduces the average estimation error of feature location and feature number by 49.24% and 
56.22%， respectively. These results indicate that the proposed method significantly improves the accuracy and 
robustness of SLAM， and helps to ensure safe operation of intelligent vehicles.
  Key words：intelligent vehicle；position measurement；feature extraction；random finite sets；sequential Monte 
Carlo

在智能驾驶领域中，同时定位与建图（simultane⁃
ous localization and mapping，SLAM）是指未知环境中

的车辆利用特定传感器获取环境信息，同时创建地

图模型并估计自身运动的过程［1］. 与视觉传感器相

比，激光雷达不受环境光照影响，能更准确测量环境

深度信息，因此激光 SLAM 在自动驾驶领域得到广

泛应用［2-3］.
传统的基于滤波器的 SLAM 方法通常需要建立

观测数据和特征状态之间的数据关联 . 这些方法通

常使用不同的滤波器估计车辆位姿，然后为每个特

征分配一个扩展卡尔曼滤波器（extended Kalman fil⁃
ter， EKF）来估计地图特征的状态 . 一些经典算法通

常基于数据关联的方法实现，如EKF-SLAM算法［4］、
FastSLAM 算法［5］. 常用的数据关联方法包括最近邻

数据关联（nearest neighbor data association， NNDA）［6］，
联合相容分支定界（joint compatibility branch and 
bound， JCBB） ［7］等 . 采用传感器对智能汽车的行驶

环境进行检测时，采集的数据常常会受到杂波的影

响，基于数据关联的 SLAM 算法很难在这些杂波的

影响下表现出较好的性能 ［8-9］. 因此，在杂波影响下

如何保证车辆良好的定位和建图效果成为 SLAM领

域的关键问题之一 . 这一问题可以通过随机有限集

（random finite sets， RFS）［9］的建模方法解决 . 随机有

限集可表示为由多个随机变量组成的集合，该集合

的特点是变量个数和状态都是随机且无序的 . 在基

于 RFS 的 SLAM 算法中，地图特征和传感器量测将

不再被建模为向量，而是采用有限集的形式进行描

述 . 因此消除了地图特征与传感器观测之间的数据

关联过程，从而避免了由数据关联错误导致的定位

和建图效果不佳的问题 . 然而，地图特征和车辆轨迹

的联合后验密度是耦合的，这制约了基于随机有限

集的 SLAM 方法的实际应用 . 因此， Grisetti 等［10］、
Adams 等［11］采 用 Rao-Blackwellized 粒 子 滤 波 器

（Rao-Blackwellized particle filter， RBPF）对其进行解

耦，解决了实际应用问题 . 根据滤波器的不同类型，

RFS-SLAM 可以分为基于概率假设密度（probability 
hypothesis density， PHD）滤波器［12］及其变种方法的

SLAM，基于多伯努利（multi-Bernoulli， MB）滤波

器［13］及其变种方法的 SLAM. 在以上算法中，车辆轨

迹估计均依赖于粒子滤波器来实现，而地图特征的后

验密度传递均依赖于基于随机有限集的滤波器来实

现 . 对于这些滤波算法的实现，常用的方法是利用高

斯混合模型（Gaussian mixture model， GMM）［14］， 该模

型可视为由多个单一高斯模型组合而成 . 使用高斯

模型的原因在于其具备良好的数学性质和计算性

能，但同时在处理非线性和非高斯问题上存在困难 . 
针对这一问题，Vo 等［15］提出了基于序贯蒙特卡罗

（sequential Monte Carlo， SMC）实现的概率假设密度

滤波器，该方法不采用线性高斯近似模型，从原理上

避免了GMM方法的局限性 .
虽然基于滤波的 SLAM 技术已经取得了许多进

展，但在智能汽车领域的应用中仍存在一些问题 . 首
先，智能汽车的行驶环境复杂，SLAM 算法的核心之

一是位置识别，该算法主要为规划层提供定位信

息［16-17］，这要求算法在杂波、漏检等影响下仍能准确

且稳定地估计环境特征和车辆位姿 . 其次，实际应用

于智能车辆的是 3D 激光雷达［18］，而传统的 PHD-
SLAM 算法主要适用于 2D 激光雷达，难以适配 . 最
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后，当前基于滤波的 SLAM 算法处理点云时会将所

有点视作特征，这不仅引入了许多不稳定的特征，同

时大量的 3D 点云数据也会在一定程度上影响算法

的实时性 .
为了解决上述问题，本文提出一种结合柱状特

征与随机有限集的车辆激光 SLAM 方法 . 该方法无

须进行观测与目标的数据匹配，能够同时准确估计

环境特征和车辆位姿，具有高精度和鲁棒性 . 本文的

主要贡献包括：1）将传统针对 2D 激光雷达的 SLAM
扩展至 3D，并采用基于 SMC 的 RB-PHD-SLAM 算

法，实现智能汽车环境特征和车辆位姿的同时估计 . 
2）利用智能驾驶环境中稳定且丰富的柱状特征，规

避了直接处理原始点云数据所带来的不稳定特征增

多和实时性差的问题 . 3）通过模拟数据集和 KITTI
数据集的验证，证实了该方法的有效性 .

1   系统架构

本文提出的基于柱状特征与随机有限集的车辆

激光 SLAM 系统架构如图 1 所示，主要包含 4 个模

块 . 在柱状特征提取模块中，鉴于 3D 激光雷达点云

数据量庞大且包含噪声，直接将所有点视作特征会

引入许多不稳定特征，因此首先对原始数据进行预

处理，特别是设置了地面点去除和点云分割步骤，以

最大限度保障柱状特征提取过程的效率和提取结果

的准确性 . 点云分割的结果是若干簇表示不同物体

的点云集合，针对这些点云簇，接下来基于M估计抽

样一致性（M-estimator sample consensus， MSAC）算

法［19］提取柱状特征，并利用半径阈值筛选出真实的

柱状物 . 在位姿预测模块中，通过建立速度运动模

型，将上一时刻的位姿递推得到当前车辆位姿的预

测值 . 在RB-PHD滤波模块中，考虑了存活目标和新

生目标，通过预测、更新、多目标状态提取以及重采

样步骤，利用加权粒子传递多目标后验概率密度的

强度函数 . 在位姿与地图更新模块中，首先对全局地

图进行更新，然后对每个粒子的权重进行更新，通过

更新的权重计算车辆位姿，使系统能够进入下一次

迭代 .

2   位姿预测与柱状特征提取

贝叶斯滤波器中的运动模型描述了车辆状态随

控制输入的变化关系 . 考虑到智能汽车的实际运行

场景，采用三自由度运动学模型［20］并引入高斯白噪

声对运动进行描述 . 智能汽车的运行环境一般为市

区道路和高速路，这些场景通常包含大量稳定的柱

状物体，如信号灯杆，行道树，交通指示牌立柱等 . 
Ren等［21］采用了区域生长算法和聚类算法得到柱状

点云类，表明柱状特征的稳定性 . 稳定的特征有利于

更精准定位，因此本文在特征提取阶段充分发掘柱

状物体，并将其作平面投影后在滤波器中进行处理 .
2.1   位姿预测模型

位姿预测模型示意图如图 2所示，x、y、θ分别代

表车辆横轴坐标、纵轴坐标和航向角，因此车辆位姿

可表示为 x = [ x，y，θ ]T. t时刻车辆位姿的概率密度

可表示为：

p (x t|u t - 1，x t - 1 ) （1）
式中：u t - 1 = [ vt - 1，wt - 1 ]T 为控制输入，vt - 1 为 t - 1 时

刻的车辆速度，wt - 1 为车辆的横摆角速度；x t - 1 为车

辆位姿 .

图1   基于柱状特征与随机有限集的车辆激光SLAM系统架构

Fig.1   Architecture of vehicle LiDAR SLAM system based on column features and random finite sets
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本研究中用来预测汽车状态的三自由度运动学

模型定义如下：
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（2）
式中：Δt为 t - 1 时刻到 t时刻的时间间隔；v̂ t - 1 =
vt - 1 + ξ vt - 1 和 ŵt - 1 = wt - 1 + ξwt - 1 表明传感器量测数据

存在一定的误差，ξ t - 1 = [ ξ vt - 1，ξwt - 1 ]T 表示均值为 0的

高斯白噪声 .
2.2   点云处理与柱状特征提取

柱状特征主要代表市区和高速场景中大量稳定

的柱状物体，如信号灯杆、行道树、交通指示牌立柱

等 . 由于激光雷达点云具有数据量大、噪声数据多的

特点，柱状物体和周围环境融合且结构尺寸相对固

定 . 因此，需要对点云进行一系列处理，以提取高质

量的柱状特征 . 基于激光雷达原始点云和环境中柱

状物体的特性，本文设计了以下点云处理程序：点云

预处理、点云分割和柱状特征提取 . 选择点云处理程

序中的每一个步骤所使用的方法时，主要考虑不同

方法的适应性、鲁棒性和复杂度差异 .

2.2.1   点云预处理

1）点云降采样 . 图 3（a）显示了HDL-64E激光雷

达采集的 KITTI 数据集单帧点云数据，该帧包含     
125 347个点 . 为满足实时性要求和保持柱状特征形

状，采用随机下采样方法（random down-sampling 
method， RDM） ［22］剔除一定比例的点云 . 图3（b）表明

了该方法在减小数据量的同时尽量保留原始数据的

形状特征 .
2）车辆点、远距离点去除 . 通过直通滤波器，清

除来自采集车辆本身的数据（这些数据对算法性能

无贡献且会产生额外干扰）. 同时，清除远距离的稀

疏点云 . 图 3（c）展示了去除 X轴±3.5 m、Y轴±1.9 m
以内，X轴±40 m、Y轴±30 m以外的点云 .

3）点云去噪 . 柱状特征提取的过程对噪声较为

敏感，因此采用半径滤波器去除离群点，得到的点云

如图3（d）所示 .
4）地面点去除 . 地面点通常占据原始点云数据

的一半以上［23］. 然而，对于定位与建图任务，提取的

特征只针对地面上的物体 . 大量的地面点不仅影响

算法实时性，而且会对接下来的点云分割造成不利

影响 . 因此，需要对地面点云进行拟合和清除，本文

采 用 随 机 抽 样 一 致（random sample consensus， 
RANSAC）算法［22］对地面进行处理，如图3（e）所示 .
2.2.2   点云分割

点云分割的目标是将具有相同或相似属性的点

云数据分组，以减少后续特征提取阶段的计算量并

提高准确性 . 由于自动驾驶场景的复杂性和多变性，

无法提前确定聚类数量，因此采用基于密度的含噪

应 用 空 间 聚 类（density-based spatial clustering of      
applications with noise，DBSCAN）［24］方法对点云进行

分割 . 然而，这种方法会分割出包含较少激光点的点

云簇，这类点云簇通常稳定性较差，因此 SLAM算法

更关注环境中较大的物体 . 由此，需要设置点云数量

阈值来清除这类点云簇 . 经过试验，本文选用 30 作

为数量阈值，以保留环境的主要特征，同时去除包含

较少激光点的点云簇，得到的点云如图3（f）所示 .

                                                      （a）原始点云                                                                            （b）点云降采样

图2   位姿预测模型示意图

Fig.2   Pose prediction model diagram
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2.2.3   柱状特征提取

柱状特征提取的效果将直接影响 SLAM 算法的

效果 . 基于模型拟合的柱状特征提取方法效果较好，

但对离群点较为敏感 . 不过，在点云预处理和分割阶

段已对离群点进行了抑制，因此本文选用 MSAC 算

法提取柱状特征 . 由于该算法能在几乎所有的点云

簇中找到符合要求的圆柱，因此所得的圆柱体半径

差别很大 . 例如，一个表示墙面的点云簇可拟合出一

个半径很大的圆柱 . 为了剔除不符合实际的柱状物，

本文设置了半径阈值为 0.2 m，在KITTI数据集 2011_
09_30_drive_0027_sync下第 878帧的试验结果中，得

到了如图 4所示的柱状特征 . 对于每个柱状特征，筛

选出圆柱体中轴线和水平面夹角大于 85°的柱状物，

并计算中轴线中点，用以近似表示该柱状物在二维

平面上的位置 .

3   基于柱状特征与随机有限集的SLAM方法

车辆三自由度运动学模型表征了智能汽车的运

动特性，而柱状特征则代表了在智能汽车运行环境

中稳定的静态物体 . 因此，本文将这两者融入 RB-
PHD 滤波器框架，并利用 SMC 方法进行实现 . 这一

融合使得传统针对 2D激光雷达的 SLAM技术得以拓

展至 3D空间，在杂波和漏检的影响下仍然能够精确

地估计智能汽车的环境特征和车辆位姿 .

                   （a）柱状特征1                              （b）柱状特征2

                       （c）柱状特征3                           （d）柱状特征4
图4   柱状特征提取

Fig.4   Extraction of column features

                                            （c）车辆点、远距离点去除                                                                        （d）点云去噪

                                                      （e）地面点去除                                                                              （f）点云分割

图3   点云预处理和点云分割

Fig.3   Preprocessing and segmentation for point cloud
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3.1   RB-PHD-SLAM算法流程

基于随机有限集的 SLAM 在贝叶斯框架下可描

述为：已知车辆信息和传感器量测信息的前提下，估

计环境中静态特征M t和车辆轨迹X0：t的联合后验密

度 pt (M t，X0：t|Z1：t，U1：t，X0 ). 定义如下缩写：

pt|t - 1 (M t，X0：t ) = pt|t - 1 (M t，X0：t|Z1：t，U1：t - 1，X0 )（3）
pt (M t，X0：t ) = pt (M t，X0：t|Z1：t，U1：t - 1，X0 ) （4）

式 中 ：U1：t - 1 为 车 辆 控 制 量 ；Z1：t 为 量 测 信 息 ；

pt (M t，X0：t ) 为车辆轨迹与地图特征的后验密度；

pt|t - 1 (M t，X0：t )为对应的预测后验密度 .
基于RFS的地图和位姿估计的递归式为［8］：
pt|t - 1 (M t，X0：t ) = fX (X t|X t - 1，U t - 1 ) ×
 ∫ fM (M t|M t - 1，X t ) pt - 1 (M t - 1，X1：t - 1 )δM t - 1

（5）

pt (M t，X0：t ) = gt (Z t|X t，M t ) pt|t - 1 (M t，X1：t )
gt (Z t|Z1：t - 1，X0 ) （6）

式中：δ定义了集合积分计算方法；gt (Z t|X t，M t ) 表示

获取量测信息的似然函数，该函数是在车辆位姿和

地图已知的条件下进行的 . 式（5）和式（6）已经包含

了由运动过程噪声、传感器测量噪声和传感器检测

准确度和虚警等引起的误差，即建立递归方程的过

程已经考虑了特征状态和数量的可变性 .
FastSLAM算法［5］采用解耦的思想解决了集合积

分无法直接计算的问题 . 基于此，本文采用RB-PHD
滤波器将式（4）解耦为：

pt (M t，X0：t ) =
pt (X0：t|Z1：t，U1：t - 1，X0 ) pt (M t|Z1：t，X0：t ) （7）

根据式（5）和式（6），联合后验密度的递归过程

可以表示为先传递轨迹的后验密度，然后再传递地

图特征的后验密度的过程，因此式（7）右侧两项可表

示为：

pt (M t|Z1：t，X0：t ) = gt (Z t|M t，X t ) pt|t - 1 (M t，X0：t )
gt (Z t|Z1：t - 1，X0：t ) ×

        pt|t - 1 (M t|Z1：t - 1，X0：t ) = ∫ fM (M t|M t - 1，X t ) ×
 

         pt - 1 (M t - 1，X0：t - 1 )δM t - 1 （8）
pt (X0：t|Z1：t，U1：t - 1，X0 ) = gt (Z t|Z1：t - 1，X0：t ) ×
           fX (X t|X t - 1，U t - 1 ) pt - 1 (X1：t - 1 )

gt (Z t|Z1：t - 1 )
（9）

式（8）表示地图特征状态的后验强度，式（9）表

示车辆轨迹的后验概率密度 . 以上过程已采用解耦

的思想解决了集合积分无法直接计算的问题 . 此处

将地图特征和量测信息都表示为 RFS，因此任意多

个目标状态后验概率密度的传递过程可以同时

进行 .
3.2   基于SMC实现的RB-PHD-SLAM算法

本研究中，对于式（8），采用基于 SMC 实现的

PHD 滤波器来进行传递；对于式（9），采用粒子滤波

来进行传递 . t - 1时刻的联合后验密度为：

{w (k )
t - 1，X (k )0：t - 1，M (k )1：t - 1 (⋅|X (k )0：t - 1 )}N

k = 1 （10）
式 中 ：w (k )

t - 1 表 示 第 k 个 粒 子 的 权 重 ；X (k )0：t - 1 =
[ X (k )0 ，X (k )1 ，X (k )2 ，…，X (k )

t - 1 ]表示第 k个粒子在不同时刻

估计得到的车辆位姿；M (k )1：t - 1 (⋅|X (k )0：t - 1 )为从开始到 t-1
时粒子 k的特征集合 . M (k )1：t - 1 由若干粒子进行加

权，即

M (k )1：t - 1 = {w (i)
t - 1，m，m (i)

t - 1}
Nt - 1，m

i = 1 （11）
{w (k )

t ，X (k )0：t，M (k )1：t (⋅|X (k )0：t )}Nk = 1 （12）
式中：Nt - 1，m 为粒子数量；w (i)

t - 1，m 和m (i)
t - 1 分别为地图特

征的后验强度中某个粒子的权重和状态 .式（12）为

按照同样的方式得到的 t时刻的联合后验密度 .
在算法中引入位姿预测模型和柱状特征，实现

从式（10）至式（12）的递归过程 . 根据式（1）的运动模

型预测 t时刻第 k个粒子的车辆状态：

X (k )
t|t - 1 ∼ p (⋅|X (k )

t - 1，U t - 1 ) （13）
式中：X (k )

t - 1 和U t - 1 分别表示 t - 1时刻车辆位姿和控

制量 . 对于每一个预测的车辆位姿，将车辆坐标系下

的量测信息转换到世界坐标系下：

Z t，veh  →X
(k)
t|t - 1  Z t，world = {z1，world，z2，world，…，znt - 1，world} （14）

SLAM问题中往往只关心环境中的静态物体，因

此对特征状态的预测只考虑存活和新生特征，则重

采样后有：

p t - 1 = {τ (i)
t - 1，l (i)t - 1}

Lt - 1

i = 1 （15）
式中：Lt - 1 表示 t - 1 时刻重采样后的粒子数量；τ (i)

t - 1
表示第 i个粒子的权重；l (i)t - 1 表示第 i个粒子的状态；

p t - 1为重采样后的粒子集合 .
对于地图存活特征预测，因为传感器噪声和算

法本身存在误差，因此在对存活特征状态进行预测

时，需要在重采样的粒子状态基础上人为叠加噪声 . 
则式（15）中的粒子集合在 t时刻的预测状态为：

p t|t - 1 = {τ (i)
t|t - 1，l (i)t|t - 1}

Lt - 1

i = 1
l (i)t|t - 1 = l (i)t - 1 + εt

（16）
式中：p t|t - 1 表示对存活特征进行预测得到的粒子集；

εt为高斯白噪声，且有 τ (i)
t|t - 1 = τ (i)

t - 1.
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对于地图新生特征预测，需要预先知道特征可

能出现的位置，但智能汽车的运行特点导致通常难

以获得有效的先验信息 . 因此，本文采用 Mullane
等［25］提出的将上一时刻的量测集合作为当前时刻的

先验信息的策略 . 此外，若量测信息缺失，本文则根

据最近的、信息齐全的那次量测进行位置预测 . 因
此，t时刻新生特征产生的粒子集合可表示为：

Z t - 1 = { z1，z2，…，znt - 1 }
Jt = nt - 1 ⋅ J rsp 
b t|t - 1 = { }τ (i)

t|t - 1，l (i)t|t - 1
Jt

i = 1 （17）
式中：Z t - 1表示最近一次不为空的量测；J rsp表示每次

量测产生的粒子数量；b t|t - 1 为预测的新生特征粒子

集；Jt表示粒子数量；nt - 1 为进行预测的帧的量测数

量；权重 τ (i)
t|t - 1 在 1到 Jt之间的和定义了 t时刻新生特

征的预期数量 .
基于最新观测对滤波器中的粒子权重进行

更新：

τ (i)
t = é

ë

ê
êê
ê1 - PD ( l (i)t ) + ∑

z ∈ Zt，world

ψt，z ( l (i)t )
kt ( z ) + Ct ( z )

ù

û

ú
úú
ú τ (i)

t|t - 1

（18）
Ct ( z ) = ∑

i = 1

Lt

ψt，z ( l (i)t )τ (i)
t|t - 1

ψt，z ( l (i)t ) = PD ( l (i)t )g ( z|l (i)t ) （19）
式中：PD ( l (i)t ) 为传感器检测到该粒子的概率大小；

g ( z|l (i)t ) 描述了量测与真实特征状态的似然函数；

τ (i)
t|t - 1 表示 t - 1 时刻第 i个粒子的权重；kt ( z ) 为杂波

强度，且有 kt ( z ) = λc fc ( z )，fc ( z ) 表示杂波状态的概

率分布 .
对于特征状态提取，首先需要对粒子进行分类，

目标的状态则由某类粒子求平均得到，本文采用 K
均值算法实现粒子分类：

N̂t|t = [∑i = 1
Lt τ (i)

t ]
F t = {w (i)

t，f，f (i)
t }Nt，f

i = 1

（20）

式中：N̂t|t表示 t时刻特征数目的估计值；F t表示聚类

算法提取的 t时刻的特征集合；Nt，f 为特征数量；w (i)
t，f

为特征权重；f (i)
t 为特征估计状态 .

对于全局地图特征更新，总的地图特征为：

M1：t = M1：t - 1 ∪ F t = {w (i)
t - 1，m，m (i)

t - 1}
Nt - 1，m

i = 1 ∪
                  {w (i)

t，f，f (i)
t }Nt，f

i = 1 = {w (i)
t，m，m (i)

t }
Nt，m

i = 1

（21）

式中：w (i)
t，m 和m (i)

t 分别为粒子 i的权重和状态；Nt，m =
Nt - 1，m + Nt，f为粒子数量 .

重采样的目的是解决迭代过程中的粒子退化问

题 . 重采样粒子数Nparticle 和每个粒子的权重 τ (i)
t  的计

算方法如下：

Nparticle = J rsp × ∑
i = 1

Lt

τ (i)
t

τ (i)
t = 1

Nparticle
∑
j = 1

Lt

τ ( j )
t

（22）

式（10）中的权重更新方法如下：

ŵ (k )
t = ∑

i = 1

Nt，r ∑
j = 1

Nt，f w ( j )
t，f

2π σ
e- (xjt，f - xit，m )2 + (yjt，f - yit，m )2

2σ2

w (k )
t = ŵ (k )

t ∑
i = 1

N

ŵ (i)
t （23）

式中：ŵ (k )
t 表示第 k个粒子的权重；w ( j )

t，f 和 ( xjt，f，y jt，f )分别

为第 j个特征的权重和估计状态；w (k )
t 为所有粒子权

重进行归一化处理的结果 .
计算有效粒子数 N *，当 N * 小于 N/2 时进行重

采样：

N * = 1/∑
i = 1

N

w (i)
t

2 （24）
综上所述，算法需要输入 t - 1时刻车辆轨迹和

环境特征的联合后验密度、t时刻车辆坐标系下的量

测信息和车辆控制量，经过车辆位姿预测、量测信息

坐标转换、静态地图 PHD滤波和粒子权重更新步骤

后，输出 t时刻车辆轨迹和环境特征的联合后验密

度，然后进入下一次循环，其中是否需要重采样取决

于计算的有效粒子数 .

4   试验与结果分析

为了评估本文提出的基于柱状特征与随机有限

集的激光 SLAM方法在车辆定位精度和特征估计精

度方面的性能，在模拟数据集和KITTI数据集上进行

了试验，并将其与基准算法（FastSLAM 算法）进行了

比较 . 为了验证所提方法的实用性和泛化性，在 4.1
节中赋予特征漏检与检测到两种状态，且在检测到

的特征上叠加高斯噪声；在 4.2 节中进行 50 次蒙特

卡罗试验 .
均方根误差（root mean square error， RMSE）可以

描述轨迹之间的偏离程度，因此采用 RMSE 定量评

估算法的定位精度 . RMSE的表达式如下：

RRMSE (k ) = 1
T∑

t = 1

T

 x̂t - xt 2  ， k = 1，2，…，N 
（25）
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式中：k表示蒙特卡罗试验序号；N表示试验总次数；

T为单次试验的总步数；x̂ t和 xt分别为车辆位置的估

计量和真实值 .
为了量化评估不同 SLAM 算法的特征估计效

果，采用最优子模式分配（optimal sub-pattern assign⁃
ment， OSPA）［26］方法作为地图特征估计精度评价指

标 . 对于状态空间中的两个有限子集X和 Y，其势分

别为m和n. 若m ≤ n，则两个子集的OSPA距离为：

d̄ (c)
p (X，Y ) =

{n-1é
ë
êêêêmin
σ ∈ Ωn

∑i = 1
m (d (c) ( xi，yσ ( i) ) ) p + cp (n - m )ù

û
úúúú}

1/p

（26）
式中：p为均值阶数；Ωn为排列的集合；yσ ( i) 表示两个

子集中对应元素形成最优点分配；d (c) (⋅，⋅)表示两个

点之间的距离；c表示最小截止距离 .
4.1   模拟数据集试验

4.1.1   试验环境搭建及参数设置

图 5 展示了模拟数据集试验环境，车辆的真实

运行轨迹用绿色曲线表示，真实的固定特征用绿色

圆点表示，传感器的量测结果用黑色小点表示 .

图 6（a）表示图 5 中轨迹的真实角速度 . 试验过

程中，将实际的车辆角速度和速度分别和高斯函数

叠加后当作传感器获得的信息 . 图 6（b）为图 5中红

色圆圈所代表的传感器检测范围，黑色小点表示真

实特征产生的量测 . 若某特征未被检测到，则形成漏

检；若被检测到，则在真实位姿上叠加高斯噪声输

出 . 红色小叉表示服从泊松分布的杂波，在检测范围

内均匀生成 . 更多数据集试验参数见表1.

4.1.2   模拟数据集试验结果及分析

图 7为一次蒙特卡罗试验的车辆轨迹和地图特

征对比 . 相比于 FastSLAM 算法，本文算法的车辆轨

迹与真实轨迹更加贴近；本文算法的地图特征绝大

部分与真实特征更加吻合 . 以上结果说明，本文算法

在杂波和漏检环境下能够更准确地估计车辆位姿和

图5   模拟数据集试验环境

Fig.5   Testing environment of simulated dataset

（a）模拟数据集角速度

（b）数据量测示意图

图6   参数设置及量测示意图

Fig.6   Parameters configuration and measurement diagram

表1   数据集试验参数

Tab.1   Dataset experimental parameters

参数

初始位姿

速度/（m·s-1）
速度方差/（m·s-2）

角速度

角速度方差/（rad·s-2）
传感器方差/（m·s-2）
传感器检测半径/m

特征被检测到的概率

仿真步长/s
仿真时间/s

杂波数量的泊松均值

数值

0，0，π/2
8

0.005
见图6（a）

0.001
0.4
26
0.8
0.1
100

5

71



湖南大学学报（自然科学版） 2025 年

地图特征，显示出更强的鲁棒性和准确性 . 本文算法

同时估计特征的数量和位置，避免了单独管理特征

带来的内存和效率问题 .

一次蒙特卡罗试验结果往往是随机的，统计结

果能更加综合地评价算法的性能 . 为了更准确地对

比不同算法的性能，本文在同样试验条件下，分别对

算法开展了 50 次蒙特卡罗试验，并采用 RMSE 和

OSPA 分别对车辆定位精度和特征估计精度进行

评估 .
图 8 展示了进行 50 次蒙特卡罗试验后，车辆定

位精度对比 . 由图 8 可以看出，相较于 FastSLAM 算

法，在大部分试验中，本文算法的轨迹保持更低的

RMSE误差 . 此外，在 50次试验中，FastSLAM算法的

均值误差为 3.89 m，而本文算法为 2.14 m，降低了

44.99%. 因此，本文算法产生的轨迹误差更小、更稳

定，可有效地提高车辆定位精度 .
图 9 展示了进行 50 次蒙特卡罗试验后，地图特

征估计精度对比 . 图 9中，OSPADist为估计的特征与

真实的特征集合间总的OSPA误差，OSPALoc为相应

的位置误差，OSPACard为相应的数量误差 . 对于这 3
个指标，本文算法仅在少数试验中高于FastSLAM算

法，而在绝大多数试验中明显低于 FastSLAM 算法 . 
具体地，对于 OSPADist、OSPALoc 和 OSPACard 的平

均值，本文算法分别为 5.600 m、1.643 m 和 3.334 m，

FastSLAM 则为 11.200 m、3.237 m 和 7.615 m. 本文算

法在 3个指标上分别降低了 50%、49.24%和 56.22%. 
因此，可以明显看出，本文算法更为精确地估计了地

图特征的位置和数量，基于本文算法可以有效提升

地图特征的估计精度 .

4.2   KITTI数据集试验

4.2.1   试验环境介绍

本研究基于真实场景采集的 KITTI 数据集

2011_09_30_drive_0027_sync（以下简称 drive_0027）
和 2011_09_26_drive_0036_sync（以 下 简 称 drive_
0036）进行算法对比验证 . 其中算法估计的地图特征

是环境中真实柱状物体在地面上的投影，因为KITTI
数据集缺乏对环境柱状物位置的详细描述，因此本

节仅针对车辆轨迹进行对比分析 .
4.2.2   KITTI数据集试验结果及分析

图 10 展示了针对 KITTI 数据集中 drive_0027 和

drive_0036 场景下两种算法的车辆轨迹和地图特征

图7   模拟数据集车辆轨迹和地图特征对比

Fig.7   Comparison of vehicle trajectories and map features in 
simulated dataset

图8   车辆定位精度对比

Fig.8   Comparison of vehicle localization accuracy

图9   地图特征估计精度对比

Fig.9   Comparison of map feature estimation accuracy
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的对比结果 . 由图 10可以看出，相较于 FastSLAM 算

法，本文算法在这两个真实场景中所估计的车辆轨

迹更接近真实轨迹 . 为了更加直观地对轨迹结果进

行对比，将轨迹投影到X轴和 Y轴，如图 11所示 . 由
图 11 可以看出，本文算法估计的轨迹在 X和 Y轴上

都更接近真实位置，这进一步验证了该算法在车辆

定位精度方面的优势 .

图 12 展示了两种算法在 drive_0027 和 drive_
0036 场景中进行 50 次蒙特卡罗试验后的车辆定位

精度对比结果 . 由图 12可以看出，在大多数试验中，

相较于 FastSLAM 算法，本文算法保持更低的 RMSE
误差 . 具体而言，对于 50次试验，FastSLAM 在 drive_
0027 场景下的均值误差为 4.53 m，在 drive_0036 场

景下为 6.05 m，而本文算法分别为 2.08 m 和 2.56 m，

分别降低了 54.08%和 57.69%. 这表明本文算法得到

的轨迹误差更小，且更为稳定，使用本文算法能够有

效提升车辆定位精度 .

              （a）drive_0027的X轴偏移           （b）drive_0027的Y轴偏移

               （c）drive_0036的X轴偏移           （d）drive_0036的Y轴偏移

图11   轨迹在X轴和Y轴上的投影对比

Fig.11   Comparison of trajectory projections on the X and Y axes

（a）drive_0027

（b）drive_0036
图10   KITTI数据集车辆轨迹和地图特征对比

Fig.10   Comparison of vehicle trajectories and map features in 
KITTI dataset

（a） drive_0027

（b） drive_0036
图12   50次蒙特卡罗试验的车辆定位精度对比

Fig.12   Comparison of vehicle localization accuracy 
across 50 Monte Carlo trials
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4.3   运行效率分析

为了验证本文算法的运行效率，在同样的硬件

平台和场景设置条件下，对本文算法和FastSLAM算

法的运行时间进行对比 . 硬件平台采用一台配备

12th Gen Intel Core i5-12600KF 处理器的台式电脑 . 
首先，在MATLAB平台上实现本文算法和 FastSLAM
算法；然后，在 4.1节描述的仿真环境下进行 50次蒙

特卡罗试验，并记录每一帧的运行时间；最后，计算

所有单帧运行时间的平均值，如表 2所示 . 由表 2可

知，相较于 FastSLAM 算法，本文算法的运行时间略

有增加，增幅为13.60%. 这与算法本身的编写方式和

较为严格的参数设置有关 . 尽管如此，本文算法在保

持运行时间增加不多的前提下，显著提升了算法的

性能 .

5   结 论

为了提升智能车辆的定位精度和特征估计精

度，本文结合柱状特征提取方法和随机有限集理论，

提出了一种基于 SMC的车辆 3D激光 SLAM方法 . 该
方法首先进行点云预处理、点云分割和柱状特征提

取步骤，以获取单帧点云中的静态存活特征和新生

特征；随后，在 RB-PHD-SLAM框架中引入这两种特

征，通过 SMC方法完成车辆轨迹概率密度和地图后

验强度在帧间的传递，实现同时估计环境特征和车

辆位姿 . 这种方法将传统基于PHD-SLAM框架的 2D
激光 SLAM 扩展到 3D，并避免了处理原始点云所带

来的计算量大和稳定性差的问题 . 模拟数据集和

KITTI 数据集的试验结果表明，与经典的 FastSLAM
算法相比，本文算法对车辆定位精度的提升超过了

40%，并使环境特征位置和数量的估计平均误差分

别降低了 40% 和 50% 以上 . 本文方法显著提高了

SLAM的精确度和鲁棒性，有助于保障智能汽车的安

全运行 .
未来将尝试引入场景中的平面特征，以扩充用

于定位和建图的特征类型和数量，从而进一步提升

算法的性能 .
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