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Numerical Analysis on Seismic Performance of Base—suspended Pendulum

Isolation Structure
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Abstract : Base—suspended pendulum isolation (BSPI) structure is a new type of suspension isolated structural
system. Firstly, the configuration of the suspension isolation layer and mechanical model of the BSPI structure are
described. Then, the finite element modeling of BSPI structure is verified through comparing with the shaking table
test. Finally, the finite element models of the BSPI structure and conventional frame structure are built, and
dynamic structural responses of these models are analyzed by performing time-history analysis under different
seismic actions. Research results indicate that the lateral stiffness of the BSPI structure is reduced greatly by
installing the suspension layer, and the acceleration response of BSPI structure is significantly reduced under rare
earthquakes, which is only 1/5~1/2 of that of a conventional frame. The displacement response of BSPI structure can
be effectively controlled by dampers, and it is reduced to 50% of that of uncontrolled BSPI structure under rare

earthquakes. The interlayer displacement of the upper structure of controlled BSPI structure is less than 1/100,
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which meets the seismic fortification goal.

Key words: base—suspended pendulum isolation structure; shaking table test; dynamic response; numerical

analysis; seismic performance
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Fig.1 Diagram of base—suspended pendulum isolation structure
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Fig.2 Details of suspension layer
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Fig.3 Mechanical model of suspension system
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Tab.1 Dynamic similarity of BSPI shaking table test
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Fig.4 Front view of BSPI structure model
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RCF 4.94 491 5.77 1.23 1.23 1.44
0.40g Jof% BSPI 3.65 3.73 3.84 0.91 0.93 0.96
A BSPI 2.21 2.14 2.27 0.55 0.53 0.57

B TS W L LA El Centro—EW i K441 , 8] 19 25 H
T BSPIA 545840 5 RCF 45 ¥4 10945 T fin gk 2 1) 7 iy
Xt MR R AT VR D B R EH T
BSPLZ5H 1Y 3l 11 TR R A2 RCF 45481 1/5~1/2,
TN 3 0 97 5 /N T RCF 454 52) 5 BSPL TG 4544
AH EE, BSPL A7 45 45 #4115 /N L7 EL
Centro—EW I | Taft—NS i F1 SH09-01 J %= 18 b 7= /F
JHT , BSPLA #4504 (1) 3 11 R 58053 50 24 20 Te 45
ZERI B 65% . 94% F1 519%. 1] UL b 5% 12 26h ik BELJE 24
BN T BSPLES MR B JE |, i@t PR R 2 FERE . AT

RN T S5 I BE w1 5 3) AN R M= S E R
BSPI 45 44 (1) JI 38 J32 1o AS [i] , e e IV 237 i SHO9-1
HREAE T, BSPLICE 4540 1 3l Ty UK R AL 1,
AHLE T RCF 2544 , FR i RORAN 2 23%. 3X A R 1937
Hb 2503 Y, BSPLAS R I 1A 4 RIS R 3 g 1
S b %) s 7 J) J0 9 I, B R4 W Wb ) PR R AR TR
SHO9-1 33X — 2%k 4 37 b by 7% I (1) w1 J A A K B
FERICR AN AN 3 U A 37 b
34 (IR N

TE ARSI R 2R KU S BSPI 454445 2 2 TRl F%
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Fig.19 Comparison of acceleration time history curves of roofs under El Centro—EW

5 RCF 2544 A R 2 1R B 1) B AR, AR T) st 7% 1 FH R
BSPIA 45 JC 15 45 ¥4 Fl RCF 2544 B 4% )2 85 K2 ) o7
Fomi I A, Fln T S(E UL 2 6. TH A5 21 3 4% b 7% ik
VERITT L3t b 45 A% i g (B A0 45 1 2k, 4331l
P 20~ 181 22 fifr 7 . 5 3L AT 1) BSPLAT #4514
FIBSPITCHE LRI b ER 21 J2 ) (5 B o 1o 4 35 /)N
RCF 2544, 528 R A F T TCHR 45 4 1 [ A Wl A8 R 2K
29707 0.1~0.6, A LA DL FL IR R A4 0.1~0.2;
2)BSPIA A5 Y AR A5 A4 J2 A 8 /N T BSPLJCHE

—— BSPIF {2451
|, P s RCF45 4

IR 8]/s
(b) 8 & F i %

S50, B R AE R FEAR T 24 50% , TR HE R R
i BELJE #5 (4 3¢  AS(E e el )N B o J2 I 2 A%, v LAY
N 1 EBEE KA ) J2 (B S 5 3) 7E El Centro—EW %\ Taft—
NS A SHO9-1 i B2 /EH T , BSPLA 45 1
BRIZ IR A3 B2 1/1 646,172 341 F11/1 455,
T 2 1 By R R R R e R B H AR (1/400) 5 78
El Centro—EW i \ Taft—NS I FIl SHO9-1 i1 7% 18 Hh 7 1
FF ., BSPLA 45 25 ¥4 1) Je K= ML £ 430 240
1/569 . 1/1 214 F1 1/415, [l AF04 2 2P B R 7 T 10
PR Hbr(1/100).

R6 AR (ER T G54 = (8] 7% Ao

Tab.6 Inter—story drift responses of structures under different ground motions

s . st Ao/ 7
" 12 22 32 12 22 32
RCF £5#y 29.99 17.72 6.40 — — —
0.20g BSPI JG45 454 5.94 3.38 1.68 0.20 0.19 0.26
P BSPIA #4544 2.19 1.75 0.95 0.07 0.10 0.15
RCF 454 97.14 30.93 10.90 — — —
0.40g BSPI G454 23.45 10.20 3.55 0.24 0.33 0.33
BSPT A7 H 454 6.32 3.91 1.97 0.07 0.13 0.18
RCF 4514 16.11 13.23 5.73 — — —
0.20g BSPT o454 1.70 1.19 0.63 0.11 0.09 0.11
TALNS BSPTAT #4544 1.54 1.03 0.56 0.10 0.08 0.10
RCF 4514 46.81 28.72 9.85 — — —
0.40g BSPI L& 2514 3.65 247 1.27 0.08 0.09 0.13
BSPIAT #5254 2.97 2.09 1.12 0.06 0.07 0.11
RCF 4514 24.09 16.18 5.97 — — —
0.20g BSPT G254 12.36 6.71 2.64 0.51 0.41 0.44
SHOO] BSPIAT {454 2.47 2.18 1.26 0.10 0.13 0.18
RCF 4544 84.72 27.01 11.35 — — —
0.40g BSPI G254 25.32 18.44 7.75 0.30 0.68 0.68
BSPIAT {4514 8.67 5.55 2.58 0.10 0.21 0.23
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Fig.20 Maximum inter-story drift responses under El Centro—EW
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Fig.21 Maximum inter—story drift responses under Taft—NS
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Fig.22 Maximum inter—story drift responses under SH09-1

BSPI JC 45 25 #4 5 BSPLAG 45 45 ¥4 1) b 7= )2 11 7%
M 1o 402 7 T, 152 iy b A T BSPLAT 45 4544 Lt
TG B R = R AL 43 0 TR T 47.8%.57.9%
64.5% , 718 1 5Z A F T BSPIAT #2845 M HL TG 755 45 4

M BRRZE IR ) R % T 48.0% .54.8% .54.4% , W] U,
T b BELJC 48 nT 2 i a5 A B AT R BHLE b, 32 1 B
2 J2E RS WA N . R ) BSPLA 44 45 ¥4 7E 55 18 M 72 4 1
TR R/ N EHE BB 1/10(130 mm)
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Tab.7 Maximum displacement response of the

isolation layer mm

a, Eag | El Centro-EW  Taft-NS SH09-1

BSPIA 59.9 28.3 70.4
0.20g

BSPL T#% 142.1 54.2 198.4

BSPI 1% 111.0 56.3 119.9
0.40g )

BSPI JG#5 245.3 108.3 263.6

4 Hit

Bt BT 4R o B S IS B R PR AR A M A TR 25 5 3t
55 PR TERE LA BT , A LU A58

1) X%t BSPL 285 44 3E 47 7K ~F- 5. 1) 9% 31y 15 38 46 F1 £k
(B, WF 5% 22 B BSPL 2544 [ 41k J 1 Wl 254 7 #1
BT R RCF 454, B e Bl 2 TARAF PR REEH
Peoh BiRge 2, BRI, R BN T, H R
A A PG T ) 7 4% 5 TR 98K il 8 A AIR | DR AR B
/NTF 0.4 A FROCHUSS SRR e BRI T,
PR FA B A in 3 e B AR RCF 25449 14 1/5~1/2.

2) BSPI &5 BB 3 BT 45 S 5 9% 8h H i B0 25 SR Wy
BT, R A BT R AR

3)BSPI 45 e fF 24 2 A0 B 26U BHLE 2%, BB 3%
PR B I RE O AR B i M R AE R L A
HeF BSPI TG 4544 , BSPT A 5 45 ¥ 1) B 4540 )2 [
DI FEIEAR T 29 50% , f K )Z AL B A 290 17415, /N
TR B 1/100.
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