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Face Forgery Detection Combining Attention Mechanism and Gabor Filter

LUO Weiwei, YUE Tiantian, LEI Qin’

(School of Electronic and Information Engineering, Lanzhou Jiaotong University , Lanzhou 730070, China)

Abstract: In view of the significant texture difference between fake faces and real faces, this paper proposes a
face forgery detection model based on texture features. Firstly, ResNetl8 is used as the backbone network, and
combined with the channel attention mechanism and residual network to solve the problem of network degradation,
in order to establish the connection between channels to extract deep features. Secondly, the autocorrelation matrix is
used to quantify the correlation between image blocks, and the features of different scales in the image are captured
to obtain global statistical features. Finally, the Gabor filter is introduced after each pooling layer of the
autocorrelation module to extract the local texture features of the image, providing a comprehensive description of
the image content, and the Softmax function is used to perform hierarchical classification. Experimental results show
that this method effectively improves the detection accuracy for fake images edited by different image enhancement
methods.
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Fig.3 Augmentation: cutout, blur, brightness and rotation
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