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Abstract: The existing deep learning—based source code vulnerability detection methods mainly focus on the
feature learning of a single programming language , and it is difficult to effectively detect the vulnerabilities caused
by the association and invocation of code units in software projects of hybrid programming languages. To address this
issue, a deep learning—based hybrid language vulnerability detection method DL-HLVD is proposed. Firstly, the

BERT layer is used to convert the code text into low—dimensional vectors, which are then used as inputs to the
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bidirectional gated loop unit to capture the contextual features, and the conditional random field is used to capture
the dependency between adjacent labels. Secondly, functions from different types of programming languages are
identified as named entity recognition in the hybrid software and reconstructed with the program slicing results to
reduce the loss of syntactic and semantic information in the code characterization process. Finally, the bidirectional
long short—term memory network model is designed to extract the vulnerability code features and realize the
vulnerability detection of hybrid language sofiware. The comprehensive experimental results on the SARD and
CrossVul datasets show that the comprehensive recall rate of DL-HLVD on the two types of vulnerability datasets is
95.0%, and the F1 value reaches 93.6%, which is improved in all indicators compared with the VulDeePecker,
SySeVR, and Project Achilles. It demonstrates that the DL-HLVD method can improve the comprehensive

performance of source code vulnerability detection in hybrid language scenarios.

Key words: vulnerability detection ; named entity recognition ; program slicing; hybrid language
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for(p:p!=""\0;p++:q++)
{

*q="p

private static int fun(int n)
{
if(n = =1ln = =2)

return 1;

—1

static int if return
B_fun_user:
fun

B_var_str:

arr err
B_var_specific:
0’12
B_var_other
Pq

O:
F=pl=4+==l1(){}

—f .

for(VARS_1;#=VARS5_1!=VAR4_1;
VARS_1++;VARS5_3++)

{
*VARS_3=*VAR3_1

}
*VARS_3=*VAR4_1

>
private static int FUN3_I(int VAR2_1)

{
if(VAR2_1=*VAR4_1Il
VARS5_3==VAR4_2)

R A8 5 IIBERT-BGRU-CRFAZ [ 2%

BGRU
7

4 iR A ) 4 AR B

B 3 BERT-BGRU-CRF #£A! 2 51 42
Fig.3 BERT-BGRU-CRF model recognition process
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BLSTM [ £ | Attention JZ il Softmax JZ 20 1 . EL{A& >k
Ui, DL-HLVD R J #2457 300 i 20 H) BLSTM
25K, IF I8 5 Attention )2 18 55 G BERRIE AY 2% 2 ; Soft-
max VAR i 2 K A5 00 e d AR A1, LA
PAT IR A 1) — 50 AT 55

5 KWERSHH

51 HiE&E
FEIE DL-HLVD B %Mk, S BUR R i 2%

¥ 42 SARDY AR A 15 7 BB A5 5504 4 Cross-
Vul “HEAT SR 0 IE .

SARD %4l £ FH 35 [ B R An e 5 BRI 9 B 2
H LR T C/CH+ Java ,C#HI PHP 25 Z Fhi% 5 10 I TR
FEAS BRSPS “bad” 1 “good” B B | 1T 4 75
e 5 #1182 s . S 7E SARD ik B C
C++F01 Java B9 U T F 4 48 , A1 “ good” hy 1 FE AR
(0), “bad” M IEFEAR (1), e 2 LARR P U1 F ok FEA B
V7 ) U T 0 B, e C/CH+ R AR BLEICR 28 312,
IEFEAR 6 7934, TakEAR 21 5194, Java FEA B HCH
26 184, IEFEA 8 836 1, fAAEA 17 3484, A &
42 F i 27

CrossVul (4 £ H Nikitopoulos SELOTPR A R
T 40 ZFp g FE 1 5 G 5 110 T TR SC A AR L (0 b T
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SO B EWE T 1 675 GitHub 39 H 4245 ]
FINVD 25 H B #5542 A1 GitHub #E47 X5 1 I 5 8
ToRUBE . AR SZIRTE CrossVul FHEHL C . C++F1 Java
T4 IR A 5 AT AR EE AR T, A5 8 C/C++EE
A RE13 3824, IEFEA 2 1434, fikEA 11 2394,
Java FEA B8 26 303 4>, IEFEA 2 078 4, T fEAR
24 2254 AL S B R B R 2 iR

®2 BREBEHEEEER

Tab.2 Preprocessed dataset information

LGRS VR BE CCHIIAYIR  Javallii Y]
SARD 45 660 6793 8836
CrossVul 26 303 2143 2078

5.2 FMIEER

SR Li S I 1 A PEAR TR AR ok PEAl DL~
HLVD 7535 I PERE , 5 2 AL HEH % (precision, P) |
F, 53 8U(F, score) \ACC 43 %4 (accuracy, ACC) & FH
4 % (false positive rate, FPR) f& 114 % (false nega-
tive rate, FNR) | B BH £ > (true positive rate, TPR)
S ISR AR O A Z AT IE TR R A AT
53 XRERSHMW
53.1 FBEE

T VS DL-HLVD A 2, S e e 7 LT
3MWFSEIEL

RQ1: BERT-BGRU-CRF 4 J22 i Ui 11 A6 01 762
T AR ot 22 i 44 SR T 2
AN S X AN R 1 5 2R P A ] A 2 D 2 ik =D i 5
SR, LUK A i i 48 SEARTUN R e Ak 2 A 42

RQ2: & 37 vk 5 4% G T T A I T 1L AN BLAT /Y
ORI 27 ) A RS I 7 kA LeAT AT A3

RQ3: I A C A4 59 Bdls 4R BEAT R R 25, VI
Zro¢ AR RS T BERS AN H A TR~ ~) 19 T
IR AS I g At R A A 2
5.3.2 &% FARIRAVER R LR L 5 AT

B X RQL, 8 T R AR %€ BERT. BGRU LA K&
CRF 15 218 5 fiv 44 SRS rb o T Y e A2 0 7
B R AR THRUR | 5256 % BERT-BGRU-CRF 1 %U rfy
B JZ A AR I BEAT TEAN LA, AW 2% 2 ) B 1A
RCR B M TR . R, O 1 i PPAG 4 e 1k i 3
kA i 4 SRR TR 5 T8 F AT Bz AL RE
5IE N RETT B 2D BE 4 S AT X L A, S
BaE R NER 3 R

R3 BHEEREIRAERBRITLE
Tab.3 Comparison of the effects of named entity

recognition models

4 R Pl% F /%  ACC/%
1 BERT-CRF 95.46 92.89  96.36
2 BERT-BGRU 93.35 90.83  95.13
3 BGRU-CRF 94.48 9352 96.50
4 BERT-BGRU-CRF 95.51 94.68  97.61
5 BGRU+IF I 92.73 90.42  94.46
6 BERT-BGRU+IE N 90.56 89.49 9592

1 ¢ 3 A UL, BERT {1 Ry #5810 S5 i 25 B, A& Ak
RE R I A A, X 75 25 T H 0 K 0 R J2 445 44 1 SCAR L
BLHE 11, BEA R A0 1 ORI Token [H] G 5K 5 M
3,4 LB WA, BERT A AFE TR IR AR ) 2%
i 4 R B S R SR T T R AL S, A B TR
i PRECTE SR R S A1, 4 41525 & 3, BERT S
fili E A BGRU JZ Xt 44 SEAA BN A 2 T+ A FR
i BERT H2 50 K B FFAFFEHCRE /7, 10 BGRU B £ ]
TORAL P S TR 7 OCHR 5 DA 2,4 ZH S A I, 5



55 4 3] SRR BT IR S MR A T DR R T T A 0 5 3% 111

A CRF JZ2 38 5 S i 24 R0 £ - 1wt il A 5ot p
b T i 44 SEAR UM S5 L B T OGS A S A v
BPE , BRI T 5841

3,4,5,6 L5 K], AL 50 IE W KA AEVE AL G
BESTAR L ACR AR, IRk R C AT Java A9 1E ) 355
TFE S T AR, (HAE AN Ao B 22 5
W A T D0 R 3R A 7 OGS S AR DT C S, 75 225 X6
R R FRE T AT, SR B AR A R R RS )
AR, IE WA H R R & AT X i A 44
SR X AR B A i 4 SR TEOMRICR R AT X fifi A5
B BT G R 7 104 1 D) 2R R AR XA A4 D i LA
iR TE OGS, G MR A R EENE
e i 3 F BERT-BGRU—-CRF [ fiiy 44 52 (A H 1)
RUFEXTIRACHS = A by SRS LA I R Az AR A%
R RHIE SR HUAE 7 R A% AT 50 B A AR 78 594 7 T V)
248 . A, DL-HLVD & H TR & da F FR 5%, RETH bR
T 25 S R I A AT MR, LA R B ) R TR A, 1T L
BT[] 2 A8 1y S AR A7 Y11 2 F 1 vy s ) Az 00 2 3
FERf P .
533 RorikipaMriiti s 5

B XFRQ2, AWM 45 ik LR Gk fg , SC IR AE
SARD %4 4 b 35 HRUIE 1 R0 114) 4% 56 Y YR ARG I T2 2L
Flawfinder”", &1 X} C/C++1E 5 A I T 46 I 7 5 Vul-
DeePecker' " SySe VR > FlEF Xt Java 1 75 A4 U 1 460
J5 ¥ Project Achilles™ 5 DL-HLVD 847 X} Ho 23047,
SLIGLE RN 4~ 6 Iiw .

R4 BFFETESARD ) Java THHESE L IERELLE:

Tab.4 Performance comparison of various methods on
Java sub datasets of SARD

i FPR/% FNR/% TPR/% PI% F/% ACC/%
DL-HLVD 589  1.67 97.82 9462 9627 9631
VulDeePecker 921 18.53  84.58 92.14 87.92 88.27

SySeVR 834 1567 8813 92.82 88.38 89.82
Project Achilles  7.52  14.82  90.85 9349 9293 92.52
Flawfinder ~ 51.86  48.63 5529 0.78 0.00  50.10

£S5 BHIETESARD B C/C++FHIIEE FHERELE R
Tab.5 Performance comparison of various methods on
C/C++ sub datasets of SARD

ik FPR/% F¥NR/% TPR/% Pl% F,/% ACC/%
DL-HLVD 5.85 5.66 95.86 92.78 94.13 95.17
VulDeePecker — 6.52 5.98 93.89  90.38 92.19 93.51
SySeVR 6.85 6.82 9491 91.63 9231 94.42
Project Achilles  8.56 14.57  89.69 86.15 87.29 89.19
Flawfinder 3028 2536  79.23 7194 7491 75.86

* 6 EFEESARDMBREIESHIRE LIaEtE
Tab. 6 Performance comparison of various methods on
Mixed language datasets of SARD

Jii: FPR/% ¥NR/% TPR/% Pl% F,/% ACC/%
DL-HLVD 5.62 2.98 97.11 9273 9496 95.40
VulDeePecker  9.15 1269  90.12 91.05 91.58 92.15
SySeVR 9.28 13.56  90.26 91.95 91.86 92.68
Project Achilles  9.71 13.95  89.39 90.21 9091 91.58
Flawfinder 40.58  30.36  75.24 40.56 50.63 65.85

H 2 4 Ff13 5 7] WL, VulDeePecker Fl1 SySeVR £
C/CH+EHEAE R B B4, 8 C 1 Java BYIE TR 57,
S X PR T I AE Java TR A 42 1 AR ACRAS
4 .M, Project Achilles ffi Fif RNN % Java J5 A At ik
FT S 7 GO I T TR R I, 7F Java B04E 42 6 B
RLAF, T 7E C/C++ 8t LRURAE .

% 4~2 6 7 W, DL-HLVD 5 HAM R 2 5 )5
BAE 2 A BEE B R R BT Flawfinder, PR
Flawfinder 7 {81 T2 SCIR IR 000 K2 ¥4 H2 AH 1 T
IR )2, AEL LRI Bk = £ X6 Tava (59 3 T3 0 00) 28 18 1k 6L
W, BT LA 3R 25 A PE e R B T LA R i 2% > O
B, JUHAE Java B FACR AP

JAF 6 1] W, DL-HLVD 7£ 1R A1 5 Bl 45 B3t
T 5.62% 1Y FPR . 94.96% [ F, #1 95.40% (1) ACC,
A LAt P T A6 00 7%, 767341 91.45% 1) F Sl I
P T 3.51 4N EH 4 4 £ W DL-HLVD H ) BERT-
BGRU-CRF B T J5 A 44 58 5C St 1) - i 1) 7 =X A
R e 8 T N TATAR 19 7 X ROk JE, BERT
R 5 2 ) F 5 WIS LT SUE B X T 5
A (R PR 3 EL AT I B i A U B 2 T T YA AR RS AR
4347 152 BRFAC A0 FAFAE TR . bbb, 56T IR
JEE 2 25 1 7 9 R O ) 2 3k S R DG g R A, (HLIE
W) 8 A1 S, LA AR AR A i s A5 28 1k, L
AGE T4 e AR A B, Tk 4 17 25 T T S 78 T AG:
Wy MIZT 4 SRS AR T R, 4028
BRI, DL-HLVD B e 2K 8 4 5%
I REAR 17 AL RE T B 5, BB B — 1 AR L
S BRI U R AE
534 Bk ERBHKIESE e G A

EF X RQ3, ZE £ SARD F CrossVul IR &1 5 S
SEVEATIRUE , SEE A5 TR 5 R

i[85 7] L, DL-HLVD 7 SARD %4 4 b i i
W R G R B B K F 38 B84 B 94.0%
91.5%.94.9% F193.3% , YL T HAth 512 , HAE SARD
e R WA F CrossVul B 4, X &
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Fig.5 Comparison of precision.accuracy.recall \F, of various methods on SARD and CrossVul datasets
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