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Autoregressive Zero—shot Speech Synthesis Based on Phoneme-level

Prosody Modeling

YUE Huanjing, WANG Jiawei, YANG Jingyu'
(School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract: To improve the naturalness and robustness of synthesized prosody, a autoregressive speech synthesis
model based on phoneme-level prosody modeling is proposed. This model enhances prosody modeling from two
aspects: inter—word pauses and phoneme durations. To enhance the diversity and accuracy of inter-word pauses, a
pause prediction module is proposed at the text frontend. This module predicts multiple pause labels based on the
original text, thereby providing accurate references for pause duration modeling in speech synthesis. To enhance the
naturalness of phoneme durations, a duration prediction module is proposed. This module predicts a mixture Gaussian
distribution for each phoneme and obtains diversified phoneme durations through random sampling. To stabilize
phoneme duration modeling in the autoregressive model, an attention—based discrimination module is proposed. This
module is applied at each time step of the autoregressive process and avoids alignment disorder through attention and
discrimination mechanisms. Experimental results demonstrate that the three proposed modules effectively enhance the
naturalness and robustness of prosody modeling, thereby improving the quality of speech synthesis.
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Fig.4 Training schematic of duration prediction
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Tab.3 Comparison experiment of pause prediction
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Tab.4 Comparison experiment of duration prediction
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Tab.5 Comparison experiment of different thresholds
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