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Disease Prediction Model Based on Multi—domain Graph Neural Network
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Abstract: Due to the characteristics of electronic medical records (EMRs), such as the diversity of data types
and temporal irregularity inherent, most existing deep learning—based methods cannot simultaneously capture static
correlations between different types of clinical data and dynamic temporal dependencies between visits during the
feature learning process. To address this issue, this paper proposes a disease prediction model based on multi—
domain graph neural network. In this model, a temporal feature learning module that combines code level attention
and time aware LSTM is first utilized to obtain the initial feature representation of patient visits. Then, based on the
correlation and time interval information between different visits, a visit affinity graph and a visit sequence graph are
constructed, and a graph convolutional neural network is used to mine the static and dynamic semantic associations
between visit records from these graphs. Finally, a multi—-domain feature fusion module based on self-attention

mechanism is utilized to combine temporal features and semantic association features to obtain the final patient
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fusion representation for future disease prediction. The experimental results on two real clinical datasets show that

our method outperforms other existing methods and achieves higher prediction accuracy.

Key words: electronic medical records ; disease prediction ; graph neural network ; attention mechanism
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34 ERHWH
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W3R 2 Frm , 1650 BUNAT 45 1 FR AT 42 H A
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MIMIC- IV % 3% £ I Recall@10 ik 3] T 0.423 2. 7F
EMR B 75 5088 G455 75 10, 55 42 o T 7 S 0 47 A
TRUAR LG, FRATTHR H A0S T80 o ik ] 45 2 B Dok 40 44 Y
Ab FERT LA G VA b A A A DR A B o [ B A AR
BB RFAE , BB AT ) 5 08 e 5 A e 81 A A
TLSTM L B 42 (8 FH L1 A 00 28 I 2% 1) Dipole 2 81
T = Y Recall F1 AUC.LSAN AU &3] T 41k
LS A2 Wi g i () B BRI, IR T
BEUR I 10 53 X6 T e ¢ ) 2 TN 1) o ik 114) 22
S0 T AR B AR 2 | R el
FA T 2 PR 28 ) 28 A1 Transformer PR AS 5] 18 44 5 )]
2553 0 2% 2 BB EMR B b %) J 30 RN 0 A0 o
F BRI AEARSCSEEG ol FH B2 5 91 8B 0 #048
5, — R L TREFR H T Transformer fJL 3/ & 4% .
KL IE , LSAN 7E = Ff A (5] #f 28 ) 2% (%) 7 3 vh = 1
Itk

&2 MD-GNN 5 Hft baseline IREIFE WM HHEE LHIXTEL SR

Tab.2 Comparative results between baseline models and MD—-GNN on two datasets

MIMIC-III MIMIC-1V
H5E 7R
Recall@10 Recall@20 AUC Recall@10 Recall@20 AUC
Dinol 0.296 3 0.4222 0.614 4 0.3460 0.4833 0.676 2
1pole
P (+0.003 5) (x0.002 3) (+0.008 6) (+0.0067) (+0.0048) (+0.006 7)
TLSTM 0.301 6 0.4347 0.616 1 0.364 9 0.5114 0.690 9
) (+0.006 1) (+0.007 4) (+0.0139) (+0.002 4) (+0.004 5) (+0.002 1)
LSAN 0.3376 0.470 2 0.637 8 0.404 9 0.5356 0.706 7
) (+0.005 0) (+0.003 7) (+0.008 9) (+0.009 8) (£0.011 4) (+0.009 5)
0.308 6 0.4418 0.617 5 0.3914 0.534 8 0.713 5
GCN-TLSTM
(+0.007 8) (+0.005 1) (+0.009 3) (+0.003 7) (+0.002 4) (+0.006 8)
el 0.3387 0.4739 0.641 6 0.4102 0.5520 0.718 6
‘ (+0.006 7) (+0.008 0) (+0.0103) (+0.0059) (+0.007 3) (+0.007 7)
0.314 4 0.4547 0.628 1 0.398 9 0.539 1 0.7200
MulT-EHR
(+0.005 7) (+0.008 6) (+0.007 9) (+0.004 5) (+0.006 5) (+0.008 4)
0.3470 0.482 1 0.657 3 0.4232 0.567 1 0.734 4
MD-GNN
(x0.010 5) (+0.0115) (+0.0149) (+0.006 4) (£0.007 5) (+0.006 4)

A RS AR n] DL B, BT T 4 4 1 L
ol 7 ¥ 1 P R R R B T At X L ik H
GCN-TLSTM 3 3 75 TLSTM F4 5L 7ilt | 34 hn— A4~ 18 4
TR 28 ) 28 SR B 5 st 12 R R IE o e ), Hokfig
AHEE TLSTM 45 3 1 — & 1Y £2& - . LCL F) FH % L2
A BOHA AR T AR A ER S C R e 1

FHIEZ R I HERA T, P, 3RS T KT MD-GNN
(1 HE 2 B . MD-GNN Z Jir LA fig BUA5- 5 e 1) 300 7
AE, FATTIA N E 2445 T LR U5 I« 1 e R I 2w %
GBI AL 27 ) B YOI 2 B R, AT LU
IR T T3 5 1 55 T AH 5C A4 12 W 44 B T ik /> — 260
FRAC SRS TP ) 520 . L, I T) R A LSTM W] L
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FVEEAZ 7 51 ] 1) F ] [0 o 4 A 384 312 o
RIS 7 &, 1 B S B R 28 W 45 22 2] R 2 )7
B[] B T8 o6 2 L A2 2 RN TR 0 SCRRAIE 27 > AR i
FEA2 7 31 22 (8] 0 A 56 P A 2 12 22 A A S ), 512
R e P B3 SCARRAE 27 20 S T 2 B WL 11 L 32 AR A st
fi) ] o 3380 efe 12 22 ) A S e R ok A 451 8 AR A%
198 AN ] PR R, — B FR R LA E A TR AR AR
M DRI, S R T T R R R R B A R
342 ek

R T K59 MD-GNN AN [m] 25 58 58 73 A 5k, 3%
fITX MD-GNN 7€ AN B8 4 1 iE AT T I Ml s 56 . 3%
13— B MD-GNN f#) 52 —5B43, [A) £ i8 id Recall@
10 Recall@20 Fl AUC K 55 IE & ITAY PERE . ZEFRATTIY
TH S g8 v it FH A B N F

MD-GNN (A) : il B MD-GNN H 14 4 it 2% 14 &
1ML (code—level embedding) , EL 4% i F multi—hot
[a] = AE M Time—aware LSTM A5 (5 A .

MD-GNN (B) : it B MD-GNN H (9 5t 2 3% F 14
FFE R EGHR 43.

MD-GNN(C) : Ml B3 5& T3 = 1AL A9 22 BRARAIE
Al B (adaptive—fusion) , B @l A 5 =XECH 0] 5 19
Pz

MD-GNN (D) : il & MD-GNN ) 5t 12 1 - &
FEAESEIGH 43 .

MD-GNN(E) : 58 & B B 1 X AFRE 2% 2] B, Y
T BR S AR AR 2 2] e

W12 3 fr s, R MD-GNN AT 2 — 3843 3 %) 75
TPEREA BT . W B3 512 2 AN ] AR 45 i 2 BGHS 2
FUIZ I P ] B AR 4 BBUER X R 28 1) F0 0 1 8 1Y)
S L W S IRATREBR T kA2 2 AL AR
PEHUBLE S, MD-GNN (B) 5 MD-GNN A [t , & Y
Recall@10 Fl AUC 7 5 5 MIMIC—- IV 43 551 T % %)
0.390 7 #10.718 6. TEREBR B I2 I 5 [ 1) REAE 4 HUAsE
HJ5 ,MD-GNN(D)5 MD-GNN A ¢, 'E ) Recall@10
FAUC 78504 45 MIMIC- T4 B R R T 6,754 E 4
SR 10.07 AN 43 a5, 33 1 BH 3 2o [ 4 42 0 4% 2 >
P A Z 8] (18 SCOCFR 0] LUZ 38 2] % EMR S0
HEE 22 RV R A I, DT 5 2% 1) A8 3 R T A 1]
FNFER . 5 G [ ), 38 3 LT Al 8 MD-GNN (A )
FIBEHY MD-GNN B TN M BE , AT o] LR B,
FRUES 012 W Gt 3 I AN (] 8 AN i fef AR 7R G
O G A, A B T ) IR A A 2 i s R
71 DT 88 730 5 9 T30 19 25 6 M . 38 3 TP i L 3R &
RALKIE T 3T 2 WL 9 2 AR a5 Oy X 7E
& e PN BB 5 T A R L A, 2 e e BRTE
FRAE 24 ) BEEL S, R MD-GNN (E) 5 58 #% 5 &l
MD-GNN A8 L 7E A5 4 b ik Re 3 A B T I
RCUE B TE I8 S A2 2 Al RLA 2 12 B I [ Hh 2
(A VB SCARFAE AT X6 55 35 A A 1 £ DRSS T A AR A
A3 LUR IR, 58 R R i SURRAIE 24 2 B i)
BRI MD-GNN (E) , 5AUFE BR¥H 73 if AR B A
MD-GNN(B) #1 MD-GNN (D) A kb , £ RE s ifii A JUr #
FE, 33X AT BE S PR A B e ok [ MIMIC— T A4 B8 3043
HRBA SERE R T A, Wi T T A
2 3T S 0 B G2 v A b S ke LS sk 2

%3 MD-GNN 5ET-fiiE 8 i aE L 4%

Tab.3 Performance comparison for MD-GNN’s variants

MIMIC-1TI MIMIC-IV
AR
Recall@10 Recall@20 AUC Recall@10 Recall@20 AUC
0.3159 0.450 7 0.641 6 0.404 8 0.553 2 0.737 1
MD-GNN(A)
(+0.005 3) (20.003 4) (+0.001 8) (+0.003 5) (+0.002 9) (+0.001 4)
0.301 1 04313 0.606 9 0.390 7 0.5356 0.718 6
MD-GNN(B)
(20.020 4) (+0.020) (+0.041 6) (+0.005 3) (+0.006 6) (+0.004 1)
0.280 4 04155 0.562 1 04170 0.561 6 0.745 5
MD-GNN(C)
(x0.018 0) (+0.018 0) (+0.044 5) (+0.006 0) (+0.006 0) (+0.005 8)
0.2795 04152 0.556 6 0.400 0 0.544 1 0.721 6
MD-GNN(D)
(0.015 1) (20.014 4) (+0.038 0) (+0.003 8) (+0.001 6) (+0.006 5)
0.301 8 0.4329 0.601 9 0.3849 0.5326 0.7232
MD-GNN(E)
(0.0227) (20.020 3) (+0.036 5) (+0.004 9) (+0.004 7) (+0.003 4)
0.3470 0.482 1 0.657 3 04232 0.567 1 0.734 4
MD-GNN
(x0.0105) (+0.011 5) (0.0149) (+0.006 4) (+£0.007 5) (+0.006 4)
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