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Abstract: In this paper, a landslide displacement prediction model integrating extreme gradient boosting and
optimized support vector regression is proposed by using extreme gradient boosting and support vector regression,
and combining the advantages of hunter—prey optimization algorithm. Firstly, extreme gradient boosting (XGBoost )
is used for the preliminary prediction of landslide displacement, and then hunter—prey optimizer (HPO) is used to

optimize support vector regression (SVR). A combined prediction model (HPO-SVR) is constructed by optimizing
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the hyperparameters of SVR using HPO to correct the prediction results of XGBoost. The validation of two sets of

landslide displacement measured data shows that the HPO algorithm obtains a more reasonable hyperparameter of

SVR through the dynamic optimization strategy of constantly updating the positions of the hunter and the prey.

Relative to the combined prediction models of XGBoost, SVR, and its combination with particle swarm optimization

algorithm, genetic algorithm, and HPO, the combined XGBoost—-HPO-SVR model achieves good results in

predicting the displacements of Yangwashan landslide and Tuojiashan landslide, with mean square errors of 3.505

and 0.550, and mean absolute errors of 1.357 and 0.538, respectively.

Key words: extreme gradient boosting; support vector regression; hunter prey optimization algorithm ; landslide
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Fig.1 Landslide displacement prediction model incorporating exireme gradient boosting and optimal support vector regression
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Fig.4 Comparison of prediction results of different models on

GPO1Y landslide data (test set)
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