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摘 要：利用极端梯度提升与支持向量回归，同时结合猎人猎物优化算法的优势，提出了

一种融合极端梯度提升和支持向量回归的滑坡位移预测模型 . 首先采用极端梯度提升（ex⁃
treme gradient boosting， XGBoost）进行滑坡位移初步预测，进一步利用猎人猎物优化算法

（hunter-prey optimizer， HPO）优化支持向量回归（support vector regression， SVR）的超参数而构

建了一种组合预测模型（HPO-SVR）以修正 XGBoost 的预测结果 . 两组滑坡位移实测数据表

明：HPO 算法通过不断更新猎人与猎物位置的动态寻优策略，获得了更加合理的 SVR 的超参

数 . 相对于 XGBoost、SVR，以及其与粒子群优化算法、遗传算法和 HPO 的组合预测模型而言，

XGBoost-HPO-SVR 组合模型在阳屲山滑坡和脱甲山滑坡位移预测中取得了良好的效果，其

均方根误差和平均绝对误差分别为3.505和1.357，0.550和0.538.
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Abstract：In this paper， a landslide displacement prediction model integrating extreme gradient boosting and 
optimized support vector regression is proposed by using extreme gradient boosting and support vector regression， 
and combining the advantages of hunter-prey optimization algorithm. Firstly， extreme gradient boosting （XGBoost） 
is used for the preliminary prediction of landslide displacement， and then hunter-prey optimizer （HPO） is used to 
optimize support vector regression （SVR）. A combined prediction model （HPO-SVR） is constructed by optimizing 
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the hyperparameters of SVR using HPO to correct the prediction results of XGBoost. The validation of two sets of 
landslide displacement measured data shows that the HPO algorithm obtains a more reasonable hyperparameter of 
SVR through the dynamic optimization strategy of constantly updating the positions of the hunter and the prey. 
Relative to the combined prediction models of XGBoost， SVR， and its combination with particle swarm optimization 
algorithm， genetic algorithm， and HPO， the combined XGBoost-HPO-SVR model achieves good results in 
predicting the displacements of Yangwashan landslide and Tuojiashan landslide， with mean square errors of 3.505 
and 0.550， and mean absolute errors of 1.357 and 0.538， respectively.
  Key words：extreme gradient boosting；support vector regression；hunter prey optimization algorithm；landslide 
displacement prediction

滑坡是最频繁且分布范围广的地质灾害之一，

会给人类的生命和财产带来巨大的损失 .滑坡的发

生是一个极其复杂的过程，不仅受地质等内部因素

的影响，也受降雨等外部因素的影响 . 当滑坡发生

时，其表面会产生形变，而形变最直观的表现就是位

移 .这是滑坡内部失稳变化最直接的表征，也为滑坡

预警带来了重要的参考信息 .实现滑坡位移高精度

的预测是预防滑坡发生的重要手段，也是滑坡预警

系统中重要的组成部分［1］.
有关滑坡位移预测的研究起源比较早［2］.早期的

滑坡位移预测主要是基于统计学的方法，具体有灰

色模型［3-4］和自回归移动平均法［5］等 .这些方法较为

准确地实现滑坡位移预测，揭示了滑坡的内在规律 .
但其仅适用于监测稳定、线性的滑坡位移数据 . 然
而，滑坡的发生是一个非常复杂的过程，其位移数据

往往呈现不稳定、非线性等特点 .这就使得上述方法

难以对滑坡数据进行有效处理 .近年来，随着基于传

感器、通信和计算机等技术的智能监测设备被广泛

应用于各个方面，我国在许多易发生滑坡的地方都

部署了智能监测设备，这为滑坡位移预测提供了更

加精准的数据 .同时，人工智能技术的出现，为不稳

定、非线性的滑坡位移数据预测提供了更加有效的

方法 .为了对滑坡位移进行有效的预测，许多学者提

出了不同的模型，主要有基于深度学习［6-8］和机器学

习的模型［9-11］等 .但是，这些预测模型在时序监测数

据不稳定时存在模型参数难以确定、预测精度不高

等问题，而且训练起来耗时、复杂 .另外，基于深度学

习的模型还需要大样本的数据集，而实际监测的滑

坡数据通常具有非线性和样本少等特点 .这就使得

基于深度学习的位移模型难以广泛应用于实际滑坡

位移预测 .
随着智能优化算法与机器学习算法等进一步发

展，基于二者的组合模型在滑坡位移预测中表现出

了优异的性能，已成为当前滑坡位移预测中的研究

热点之一 . 例如，优化支持向量回归算法的组合模

型［12-14］和神经网络的组合模型［15-18］等 . 其中，文献

［12］将 20种智能优化算法用于优化 SVR，以此来提

升模型的性能 .同时指出，最优超参数是调整机器学

习方法性能的关键，而且没有一个群智能优化算法

能够优化所有问题 .因此，在地质灾害中要不断寻找

和应用新模型来提升滑坡位移预测性能 .文献［17］
采用随机分形搜索和多元宇宙优化器优化了人工神

经网络，进一步提升了滑坡位移预测的精度 .由此可

见，在这些组合模型中，均是通过引入群智能优化算

法优化原有预测模型的超参数来提升预测模型的性

能 .但是，对于不稳定滑坡数据而言，其仍然表现出

预测精度不高的问题 .另外，群智能优化算法自身可

能也会陷入局部最优值，从而影响预测精度 . 鉴于

此，将新型群智能优化算法与滑坡位移预测模型结

合，是寻找精准滑坡位移预测模型的有效手段之一 .
为了实现滑坡位移的有效预测，本文利用极端

梯度提升（extreme gradient boosting， XGBoost）模型

的泛化能力、鲁棒性、灵活性等优势，先采用XGBoost
对滑坡位移进行初步预测 . 其次，以支持向量回归

（support vector regression， SVR）为基础，借助寻优能

力强的猎人猎物优化算法（hunter-prey optimizer， 
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HPO）进一步优化支持向量回归的超参数，提出了一

种融合XGBoost和优化 SVR的组合预测模型 .最后，

通过滑坡北斗实测数据实验分析了本文所提模型

（XGBoost-HPO-SVR）的预测效果，并与 XGBoost、
SVR、以及 XGBoost 和 SVR 与粒子群优化算法、遗传

算法和HPO等组合预测模型的性能进行了对比 .

1   相关算法介绍

1.1   极端梯度提升(XGBoost)
XGBoost 算法是集成学习算法 Boosting 类的代

表之一，具有较高的预测精度和效率，可用于解决回

归、分类问题 .其实质是通过多次迭代而获得训练模

型 .而且，每次迭代会训练出一个弱学习器 .每个弱

学习器是通过拟合上一轮弱学习器的残差而得到 .
之后，将所有弱学习器的预测值进行加权求和，从而

得到最终的预测结果 . 该算法的详细原理可见文

献［19］.
对 于 滑 坡 位 移 训 练 样 本 数 据 集 D =

{( x1，y1 )，( x2，y2 )，⋯，( xk，yk )}而言，XGBoost 算法对

第 k个样本的预测过程可表示为

ŷk = ∑
n = 1

N

fn( )xk （1）
式中：xk为第 k个样本；ŷk代表第 k个样本的预测值；

fn( xk )代表第 n个弱评估器对第 k个样本 xk 的预测

结果 .
为了减少数据过拟合，提升模型的泛化能力，

XGBoost 算 法 在 目 标 函 数 中 引 入 了 正 则 项

∑
n = 1

N

Ω ( )fn( )xk ，可由式（2）计算得到 .即

∑
n = 1

N

Ω ( )fn( )xk = αη + σ∑
j = 1

η

w2
j （2）

式中：α和σ为模型复杂度的相关变量；η表示叶节

点个数；wj表示叶节点 j的权重 .
引入后的目标函数为

Oobj = ∑
k = 1

T

l ( yk，ŷk ) + ∑
n = 1

N

Ω ( )fn( )xk （3）
式中：∑

k = 1

T

l ( )yk，ŷk 为 T个样本总的损失函数值；yk代

表真实值；T为当引入第 n个弱学习器时的总样本

数；N为所有弱学习器的个数 .
利用XGBoost模型预测滑坡位移时，先利用前 k

个滑坡数据完成 XGBoost 模型的训练 . 再将第 k + 1
个滑坡数据输入训练好的XGBoost模型中进行预测 .
最后，利用真实值和预测值间的误差来评价模型 .另
外，弱学习器的个数是影响 XGBoost 模型预测结果

的关键，XGBoost模型中弱学习器个数越多，模型的

学习能力就越强，但越会带来计算资源的浪费 . 所
以，可通过实验来获得弱学习器的最佳个数，旨在取

得最好的预测效果 .
1.2   支持向量回归算法(SVR)

SVR 算法是一种基于支持向量机的回归类算

法，在处理非线性回归问题上具有独特的优势［20］.它
利用核函数将低维空间上线性不可分数据转化为高

维空间上的线性可分数据，很好地解决了数据之间

的非线性问题，而且 SVR 在小样本数据集上的性能

优于神经网络方法 .因此，SVR被广泛应用在地质灾

害、工业、农业等领域［20-22］.其主要思想是，利用非线

性映射将样本数据映射到高维特征空间进行训练计

算，从而得到最优的决策函数，旨在取得最佳的拟合

效果 .其过程如下：

对于给定的滑坡位移训练样本数据集 D =
{( x1，y1 )，( x2，y2 )，⋯，( xk，yk )}，SVR的估计函数为［23］

f ( x) = W Τx + b （4）
式中：W和 b是待确定的参数，( ⋅ ) Τ

表示转置 .
假设 SVR通常容许 f ( x)和 y之间最多存在一个

偏差 ε.即，只有当二者差别的绝对值大于 ε时，才计

算损失 .因此，当训练样本落入中心为 f ( x)、宽度为

2ε的间隔内时，则认为预测正确；否则，结果错误 .所
以，SVR算法估计函数的求解问题可转化为

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min
W，b，ξk，ςk

1
2  W 2 + C∑

k = 1

m

( )ξk + ςk ，

s.t.f ( )xk - yk ≤ ε + ςk，
yk - f ( )xk ≤ ε + ςk，
ξk ≥ 0，ςk ≥ 0，k = 1，2，⋯，m

（5）

式中：ξk和 ςk是松弛变量；C是惩罚因子；yk为对应样

本 xk的真实值 .利用 SVR模型预测滑坡位移时，其过

程和步骤与极端梯度提升（XGBoost）完全相同，只需

要通过实验选取合适的核函数和超参数，即可提高

SVR模型的预测效果 .
1.3   猎人猎物优化算法(HPO)

HPO 是一种群智能优化算法［24］，其灵感来源于
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狮子、狼等猎人以及鹿和羚羊等猎物 .该算法具有超

强的寻优能力，目前被广泛应用于电力、轴承故障识

别、交通［25-27］等领域 . 其主要思想是：猎人捕食移动

中的种群猎物时，通常会选择一个远离群体的猎物 .
当猎人发现猎物后，便开始追逐猎物 . 在追逐过程

中，猎人朝着猎物的位置不断地调整自己的位置，而

猎物也会向更安全的地方移动 .通常认为，猎物最安

全的地方则被认为是优化问题的最优解 .该算法的

主要技术步骤如下［24］.
首先，随机初始化种群中每个成员的位置 .根据

此算法的规则与策略，在搜索空间中，通过控制和引

导种群来不断更新成员的位置，并使用适应度函数

的计算结果来动态评估新位置的优劣 .该过程会使

解决问题的方案在每次迭代中得到优化，从而获取

最优位置 . 初始化种群的位置由式（6）随机生成得

到 .式（6）为

Si = rand (1，d ) ⋅ (bmax - bmin ) + bmin （6）
式中：Si代表猎人或猎物的位置；d代表问题变量的

维数；bmax 和 bmin 分别代表了变量的最大值和最小值；

rand ( ⋅ )代表随机函数 .
初始化种群位置后，HPO 算法的关键在于猎人

和猎物的选择及其位置的不断更新，即为

Si( t + 1) =
ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

Si( )t + 0.5 é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú( )2QZPpos - Si( )t +
( )2 ( )1 - Q Zμ - Si( )t

，

        R5 < β；                                                  ( )7a
Hpos + QZ cos (2πR4 ) × ( )Hpos - Si( )t ，

       R5 ≥ β                                                      ( )7b
（7）

式中：Si( t)和 Si( t + 1)分别代表 t和 t + 1时刻猎人和

猎物的位置；Ppos 是距离均值位置 μ最远的猎物位

置；Hpos 是全局最优的位置；Z是自适应参数；Q是探

索和开发之间的平衡参数；R4 和R5 分别是[ - 1，1]和
[0，1]区间的随机数；β是调节参数，本文设置为 0.1；
μ是所有位置的平均值 .当 R5 < β时，依据式 (7a)更
新猎人的位置，否则依据式 (7b)更新猎物的位置 .Q、
Z和μ的计算公式分别为

Q = 1 - λ( 0.98
λmax ) （8）

ì

í

î

ïïïï

ïïïï

V = R1 < Q
θ = ( )V == 0
Z = R2 ⊗ θ + R3 ⊗ ( )∼ θ

（9）

μ = 1
ω∑

i = 1

ω

Si （10）
式中：λ代表当前迭代次数；λmax 代表最大迭代次数；

R1 和R3 是[0，1]之间的随机向量；R2 是[0，1]之间的

随机数；V是与变量数相关的随机向量；θ是满足条

件 (V == 0)的向量R1 的索引值；⊗为克罗内克积；ω

为初始种群数 .

2   XGBoost-HPO-SVR组合预测模型

对于复杂多样的滑坡灾害，当只采用单一滑坡

位移预测模型时，预测结果常常不够理想 .为此，本

文利用鲁棒性强的XGBoost算法与高效率的 SVR算

法的组合方式来进行滑坡位移预测 .其中，超参数的

选取是提高 SVR 模型预测精度的关键 .考虑到 HPO
算法的寻优能力强，需要设置的参数少，本文采用

HPO来优化 SVR的超参数，旨在提高 SVR模型用于

滑坡位移的预测精度 .即，利用划分的训练集数据构

建 SVR模型，并将 SVR预测模型的均方误差作为适

应度函数输入 HPO算法中，适应度函数的变量值就

是需要的 SVR 的超参数 C和 g. 随着迭代次数的完

成，最小的适应度函数所对应的变量值就是 SVR 模

型的最优超参数 .
XGBoost-HPO-SVR 组合模型主要由 XGBoost

滑坡位移初步预测模型和 HPO-SVR 残差预测模型

两部分组成 .其中，XGBoost滑坡位移初步预测模型

进行滑坡位移初步预测时，首先将滑坡位移数据划

分为训练集和测试集 .利用训练集合理确定模型决

策树的棵数，从而完成模型训练 .同时，利用训练好

的模型进行初步预测，并获得残差序列 .在此基础之

上，利用 HPO-SVR 残差预测模型进一步对 XGBoost
模型的残差序列进行修正，从而提高滑坡位移预测

的精确性 .具体步骤如下：

1）首先标准化实测的滑坡位移数据，然后将其

划分为训练集和测试集 .
2）利用训练集数据，在给定弱学习器的个数范

围后，通过交叉验证的方式，先确定 XGBoost模型中

弱学习器的个数，并将其代入 XGBoost模型中 .在此
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基础之上，利用训练集来完成XGBoost模型的训练 .
3）基于训练好的 XGBoost 模型，进行滑坡位移

的初步预测，并用实际位移值与预测值相减得到残

差数据集 .然后对其进行标准化处理，并按比例划分

为残差训练集和残差测试集 .
4）初始化HPO算法，设置HPO算法的种群数和

迭代次数以及寻优范围 .然后利用残差训练集通过

HPO确定出 SVR的最优超参数C和 g.并将最优超参

数值代入 SVR 模型中，再次利用残差训练集完成

SVR 模型的训练，并利用残差测试集进行滑坡位移

残差的预测，从而得到残差的预测结果 .
5）将 XGBoost 初步预测结果与 HPO-SVR 残差

预测结果相加，得到最终的滑坡位移预测结果，并利

用平均绝对误差（mean absolute error， MAE）、均方误

差（mean square error， MSE）、均方根误差（root mean 
square error， RMSE）来评价模型的预测精度 .

上述 1）、2）和 3）步为 XGBoost-HPO-SVR 组合

模型的初步预测部分；4）和 5）步为 XGBoost-HPO-
SVR 组合模型的残差预测部分 .XGBoost-HPO-SVR

组合模型的流程如图1所示 .

3   XGBoost-HPO-SVR模型实例测试

为了说明 XGBoost-HPO-SVR 组合模型的预测

效果，本文选取了甘肃省渭源县不同的滑坡体类型，

即土质推移式的阳屲山滑坡和牵引式黄土层的脱甲

山的监测数据进行了实验 . 并与分别采用单一的

XGBoost 和 SVR 预测模型，以及 XGBoost、SVR 与遗

传算法（genetic algorithm， GA）、粒子群优化算法

（particle swarm optimization， PSO）和 HPO 构建的预

测组合模型（即 XGBoost-PSO-SVR、XGBoost-GA-
SVR、XGBoost -SVR）进行了性能对比，其结果如    
图4~图7和表1~表2所示 .

阳屲山滑坡受地震、风化、洪水冲蚀等累进性破

坏的影响，坡体发育冲沟、森林植被破坏，总体坡向

330°，是一处欠稳定的滑坡 .脱甲山滑坡位于甘肃省

定西市渭源县峡城乡脱甲山村，坡高 70 m，滑坡长约

220 m、宽 100 m，平均坡度 30°，总体坡向 223°. 本文

利用阳屲山滑坡和脱甲山滑坡体的监测点累计位移

图1   融合极端梯度提升和优化支持向量回归的滑坡位移预测模型的流程

Fig.1   Landslide displacement prediction model incorporating extreme gradient boosting and optimal support vector regression
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数据来测试 XGBoost-HPO-SVR 组合模型的预测性

能 . 所用位移监测数据均由北斗/GNSS 监测网络监

测获得 .其中，阳屲山滑坡数据为2022年4月14日—

2023年 1月 10日的累积位移值，脱甲山滑坡数据为

2021年8月2日—2023年6月25日的累积位移值 .阳屲

山滑坡和脱甲山滑坡每天的位移监测值如图2所示 .

考虑到滑坡是受内外因素影响的复杂过程，其

每天发生的位移，也会影响未来几天内滑坡的位移 .
故对位移值进行变换 .也就是说，用第 t-1，t-2和 t-3
天的位移预测第 t天的位移 . 即在利用 XGBoost-
HPO-SVR进行初步预测和其余模型预测时，用前三

天的位移去预测第四天的位移 .为记录方便，后文使

用GP01Y和GP01T分别表示阳屲山滑坡和脱甲山滑

坡的位移 .
在利用GP01Y和GP01T滑坡监测数据验证各模

型的预测效果时，均将数据分为训练集和测试集 .利
用 XGBoost 模型进行初步预测时，阳屲山滑坡和脱

甲山滑坡分别以 2022 年 4 月 14 日—2022 年 10 月 2

日和 2021年 8月 2日—2023年 3月 16的数据为训练

集，以 2022年 10月 3日—2023年 1月 10日和 2023年

3 月 17 日—2023 年 6 月 25 日的数据为测试集 .在获

得残差数据后，将残差数据按 7∶3 的比例划分为残

差训练集和残差测试集，并利用HPO-SVR模型进行

残差预测 .即，在利用HPO-SVR进行残差预测时，阳

屲山滑坡分别以 2022年 10月 3日—2022年 12月 11
日和 2022年 12月 12日—2022年 1月 10日的残差数

据为训练集和测试集 . 脱甲山滑坡分别以 2023 年 3
月 17 日—2023 年 5 月 26 日和 2023 年 5 月 27 日—

2023年 6月 25日的残差数据为训练集和测试集 .最
后，综合初步预测和残差预测的结果，获得最终位移

预测结果 . 对于其余模型预测，阳屲山滑坡分别以

2022年4月14日—2022年12月11日和2022年12月

12日—2023 年 1 月 10 日的数据为训练集和测试集 .
脱甲山滑坡分别以 2021年 8月 2日—2023年 5月 26
日和 2023 年 5 月 27 日—2023 年 6 月 25 日的数据为

训练集和测试集 .其中，所划分的训练集数据来完成

相应模型的参数选取和模型训练，测试集数据来完

成模型的预测 .
表1为XGBoost-HPO-SVR、XGBoost-PSO-SVR、

XGBoost-GA-SVR 等模型中 SVR 的最优超参数值 .
其中，SVR模型的核函数采用径向基核函数（rbf），其

余参数采用 Sklearn 库中的默认值 .HPO、PSO 和 GA
算法的种群数为 50，迭代次数为 500次，寻优范围为

0.01~200.

表 1 中，C为惩罚因子，代表了模型对误差的容

忍程度 . 也就是说，C越大，说明模型在训练集中的

表现越好（即其准确率越高），但其泛化能力越弱，越

容易出现过拟合 .反之，说明模型的泛化能力越强，

但可能存在欠拟合现象，使得模型表现不佳 .g代表

模型核函数的系数，欠拟合时要增大该值，过拟合时

要降低该值 .SVR模型的性能受参数影响很大，因此

（a）阳屲山滑坡位移监测数据

（b）脱甲山滑坡位移监测数据

图2   滑坡位移监测数据

Fig.2   Landslide displacement monitoring data

表1   不同模型优化的SVR超参数值

Tab. 1   Values of SVR hyperparameters optimized
by different models

模型

XGBoost-
HPO-SVR
XGBoost-
PSO-SVR
XGBoost-
GA-SVR

数据集

GP01Y
GP01T
GP01Y
GP01T
GP01Y
GP01T

超参数

C

1.015
0.173

10.152
0.010
1.853

21.831

g

0.01
6.900
0.010

11.070
7.333
2.434
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要获得性能好的模型需对模型的超参数进行合理的

确定 . 本文采用 HPO 算法来确定 SVR 的超参数，即

将 SVR模型作为一个函数输入HPO算法中，超参数

就是这个函数的变量值 .通过设置 HPO算法的种群

数、迭代次数以及参数的寻优范围，让 SVR模型在给

定的超参数值范围内进行多次迭代来得到最优的超

参数值 .当 SVR模型的均方误差最小时，模型的超参

数值即为最优的超参数 . 其中，在利用 XGBoost 和
SVR 进行两步预测的过程中，阳屲山滑坡数据最优

的 SVR超参数C和 g分别为 1.015、0.01，脱甲山滑坡

数据最优的SVR超参数C和g分别为0.173、6.900.
XGBoost 模型中树的数量决定了模型的学习能

力 .为使 XGBoost模型有一个较高的学习能力，本文

通过 5折交叉验证的方式，利用XGBoost模型在训练

集上的学习曲线来确定弱学习器的个数 .其中，弱学

习器的个数范围为 0~300，其结果如图 3所示 .由图 3
可知，弱学器个数在 55左右，该模型的学习率较高 .
因此，所用弱学习器的个数选取为 55.其余参数均采

用XGBoost库中的默认值 .

基于GP01Y和GP01T滑坡监测数据，采用不同模

型的预测值和实际监测值的对比如图4~图7所示 .图4
和图 5 分别为 XGBoost、SVR 与 XGBoost-HPO-SVR、

XGBoost-PSO-SVR、 XGBoost-GA-SVR、 XGBoost-
SVR等模型分别在阳屲山滑坡和脱甲山滑坡预测结果

对比图 . 从图 4 和图 5 可看出，XGBoost-HPO-SVR、

XGBoost-PSO-SVR、 XGBoost-GA-SVR、 XGBoost-
SVR等组合模型的预测结果优于单一模型XGBoost和
SVR的结果 . 特别是，XGBoost-HPO-SVR 的预测结

果最好 .

表 2 给 出 了 不 同 预 测 模 型 的 MAE、MSE 和

RMSE，以此来定量评估不同模型的滑坡位移预测精

度 .由表2可见：

1） 单一的预测XGBoost模型和 SVR模型的MSE
分 别 为 6.472 mm 和 13.480 mm. XGBoost-SVR、

XGBoost-GA-SVR 和 XGBoost-PSO-SVR 等组合模

型的 MSE 分别为 3.999 mm、3.891 mm、3.790 mm，而

XGBoost-HPO-SVR 组合模型的 MSE仅为 3.505 mm.
可以看出，组合模型的预测效果优于单一模型 .尤其

是 XGBoost-HPO-SVR 模型 . XGBoost-HPO-SVR 相

比 于 XGBoost、SVR、XGBoost-SVR、XGBoost-GA-
SVR 和 XGBoost-PSO-SVR 模型， MSE 分别下降了

2.967 mm、9.975 mm，0.494 mm、0.386 mm、0.285 mm，

图4   不同模型在GP01Y滑坡数据上预测结果对比图

（测试集）

Fig.4   Comparison of prediction results of different models on 
GP01Y landslide data （test set）

图5   不同模型在GP01T滑坡数据上预测结果对比图

（测试集）

Fig.5   Comparison of prediction results of different models on 
GP01T landslide data （test set）

图3   XGBoost模型不同弱学习器个数的学习率

Fig. 3   Learning rate of XGBoost model with different number of 
weak learners
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其预测效果明显优于单一模型 .对于模型的MAE来

说，XGBoost-HPO-SVR 的 MAE 仅为 1.357 mm，而单

一预测 XGBoost 模型和 SVR 模型的 MAE 分别为

1.517 mm 和 1.810 mm. 相比于单一预测 XGBoost 和
SVR 模型而言，XGBoost-HPO-SVR 的 MAE 分别下

降了 10.55% 和 25.03%，其预测效果更优，更加接近

真实值 . 综合而言，XGBoost-HPO-SVR 模型具有最

好的预测效果 .
2） 对于 GP01T 滑坡数据而言，单一的 XGBoost

模型和SVR模型的MSE分别为0.755 mm和0.784 mm，

XGBoost-SVR、XGBoost-GA-SVR 和 XGBoost-PSO-
SVR 等组合模型的 MSE 分别为 0.636 mm、0.574 mm
和 0.594 mm 而 XGBoost-HPO-SVR 组合模型的 MSE
仅为 0.550 mm.可以看出，组合模型的预测效果优于

单 一 模 型 ，尤 其 是 XGBoost-HPO-SVR 模 型 .
XGBoost-HPO-SVR 相比单一预测 XGBoost 和 SVR
模型， MSE 分别下降了 27.15% 和 29.85%.其预测效

果明显优于单一预测模型 . 对于模型的 MAE 来说，

XGBoost-HPO-SVR 的 MAE 仅为 0.538 mm，而单一

预 测 XGBoost 模 型 和 SVR 模 型 的 MAE 分 别 为     
0.644 mm 和 0.623 mm. 相比于单一预测 XGBoost 和
SVR 模型而言，XGBoost-HPO-SVR 的 MAE 分别下

降了 16.46%和 13.64%，其预测效果比其他模型均有

所提升 . 这同样表明，XGBoost-HPO-SVR 的预测效

果最好 .

为更直观地说明 XGBoost-HPO-SVR 组合模型

与其他模型在不同滑坡数据集中的预测优势，本文

进一步给出了不同模型预测结果的柱状图，如图 6

和图 7 所示 . 图 6 和图 7 为 XGBoost-HPO-SVR 与

XGBoost-PSO-SVR、XGBoost-GA-SVR、XGBoost-
SVR、XGBoost、SVR 等模型分别在阳屲山滑坡和脱

甲山滑坡预测精度对比图 .其中 RMSE 和 MAE 参考

左侧轴，MSE 参考右侧轴 . 由图 6 和图 7 清晰可见，

HPO 算法明显提升了 SVR 模型的预测性能 . 采用

XGBoost 的组合模型的预测效果较好，而融合 XG⁃
Boost、HPO 和 SVR 算法两步预测的 XGBoost-HPO-
SVR 模型明显优于只采用单一 XGBoost、SVR 模型 .
综合而言，本文所提XGBoost-HPO-SVR滑坡位移预

测模型的性能更优 .

4   结 论

本文将 XGBoost、SVR 和 HPO 相结合，提出了

XGBoost-HPO-SVR滑坡位移预测模型 .该模型利用

XGBoost初步预测和 SVR 残差预测相结合的方式实

现了滑坡位移的高精度预测 .同时，采用猎人猎物优

化算法（HPO）合理确定了 SVR 的超参数，进一步提

图7   GP01T不同模型预测精度对比图

Fig.7   Comparison of prediction accuracy of different
models of GP01T

图6   GP01Y不同模型预测结果对比图

Fig. 6   Comparison of prediction results of different
models of GP01Y

表2   不同模型预测结果对比（测试集）

Tab.2   Comparison of prediction results of different models 
（test set）

滑坡

GP01Y

GP01T

预测模型

XGBoost
SVR

XGBoost-SVR
XGBoost-GA-SVR
XGBoost-PSO-SVR
XGBoost-HPO-SVR

XGBoost
SVR

XGBoost-SVR
XGBoost-GA-SVR
XGBoost-PSO-SVR
XGBoost-HPO-SVR

MAE/mm
1.517
1.810
1.417
1.367
1.364
1.357
0.644
0.623
0.571
0.577
0.549
0.538

MSE/mm
6.472

13.480
3.999
3.891
3.790
3.505
0.755
0.784
0.636
0.574
0.594
0.550

RMSE/mm
2.544
3.671
2.000
1.973
1.947
1.872
0.869
0.886
0.798
0.758
0.771
0.742
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高了滑坡位移的预测精度 .通过两起滑坡北斗/GNSS
监测实例，对比验证了本文所提XGBoost-HPO-SVR
组合模型的优势，结论如下：

1）利用HPO算法通过不断更新猎人与猎物位置

的动态寻优策略，实现了 SVR算法的精细化调参，并

确定了超参数的取值 .
2）XGBoost-HPO-SVR 组合模型采取初步预测

和残差预测相结合的方式，实现了滑坡位移预测精

度的大幅提升 . 与 XGBoost、SVR、HPO-SVR、PSO-
SVR、GA-SVR 以 及 XGBoost-PSO-SVR、XGBoost-
GA-SVR、XGBoost -SVR等组合模型相比，其可获得

精度更高的滑坡位移预测结果，在滑坡预警中具有

较高的应用价值 .
需注意的是，本文针对滑坡运动而产生的位移，

构建了XGBoost-HPO-SVR模型 .在应用本文所提出

XGBoost-HPO-SVR模型进行滑坡位移预测时，需根

据实际滑坡位移数据和实际需求确定残差预测的比

例 .此外，在XGBoost和 SVR模型中还需通过实验确

定一些更加合理的参数值，例如，弱学习器的个数以

及核函数等 .但正如引言所提到，滑坡失稳是受内外

因素共同影响的复杂过程，顾及内外多因素的高精

度滑坡位移预测模型将是下一步工作的重点
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