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# E.IA EDA T Ll id £ % E N REMH T4 F A K Z K (half-perimeter wirelength,
HPWL) % fo MU T7 i ok iRk 2 i 38 M PR B X3 AR R L & B R B P A . R,
HPWL 9 R S MR A THEM AR LM XA EFEABELRA TAAR A . B, & B bl
A% R A AT ) 28 K (weighted—average wirelength, WAWL) A% & 2242 HPWL, 42 & 3% 3 R -F
HEAEE R, AR T — AR B E AT R K (SaWAWL) BEAY 3 id A e it
LFEFRKE A E R IAES 8GR ATy, EARIETF LR A HPWL R £ £y,
RETHREEA LT ARE ATHRBOGBER AT A2 hH B, 2R T EDAC
2012 FFiR Ao EAGBEE  2E R R LB R ST ME F B K& K AR ) 3.69%.
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A Self—adaptive Weighted—average Wirelength Model for Global Placement

CHI Yuanxiao'?, WANG Zhijun®", LIANG Liping®, QIU Xin'
(1. Institute of Microelectronics of Chinese Academy of Sciences , Beijing 100029, China;
2. School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China;

3. School of Integrated Circuits, Beijing University of Posts and Telecommunications , Beijing 100876, China)

Abstract: The existing EDA tools address the global placement problem of very large scale integration (VLSI)
physical design by minimizing the sum of half-perimeter wirelength (HPWL) under density constraints. However,
the non—differentiability of HPWL renders gradient-based advanced optimization methods inapplicable directly to
global placement. Consequently, the weighted—average wirelength (WAWL) model is often employed to approximate
HPWL, but it struggles to achieve a balance between smoothness and accuracy. This paper introduces an improved
self-adaptive weighted—average wirelength (SaWAWL) model. It dynamically adjusts the weighted factors 7y for each
wire’ s actual length, ensuring both smoothness and reduced error in fitting HPWL. The proposed model enhances
the quality of global placement. A global placer based on this model is implemented and validated on the DAC 2012

open benchmark. The results indicate a 3.69% reduction in the total sum of half-perimeter wirelength.
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A1 Ja (placement ) P 5 R R ABE 4 B HA % (very
large scale integration, VLSD) ¥ BRE T H AR HE L. IT
TERR N R A ALE, AR B BT i, AR T
F& NP A5 5 S8 B AR A VR RESE A, S
B AR A, AT LU, B SRAS i S5 R e o a5t 1) A Sy 45
W BB Y IS S0 BR (AN PRy 25 5 R LR ) 2
Be AT . PR, 55K — s 28010 O 12 ke figk e A
Jai [0} AW PR T U 2 SRR R, A1 JRy
—ANHELL LR MR i NP IRIMEIRI R HOR g ik 4
P17 = A B RO ) SR AR KR TR
3 BT JR 7 vk AT AT SR 7k, G P A T A )R 2
H A e VST A7 Jry [ 8 fe Stk 4 7 k5 2y
TR A RAL TR T80T A 3h1E, electronic
design automation, EDA ) Ul Innovus & F B 777 . i AT
A1 R B A R i Ry g AR AR O A2 R A
J&j (global placement, GP) % %4k (legalization, LG)
A4 J5) (detailed placement, DP). 7£3X — A~ B¢
2R Ry i ) — 20, PO B RERE T
A bR ERITTH AL, T X LR E T i BT A1 Jm) B 45
L LG TUTTLE GP A A bR vk T & FRAL
FEARS IR BR BN Z A A E & s DP I 7 Firid 4>
A PR LA R AT 8GR, JE— 0 B A SR Y
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HOTH R SR KR K (HPWL) 53 944 G i
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WA R R TR AT T O T H bR R A RCRAR XS
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min EEWL(e; %, y) (1)
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w20 9 278 BT TE AT B R AR AR
WL(- 5 +) Zon it i B Ay B0 (AL 384 1 ST AN
FATE) S LK 5 o, R U BE Y H AR L
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o Do) SRk AR Ja ik T 4R 0 2 B AR PRI A
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A—MDWRA,) =0M 8 x,, 151502 REATE
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3 HENMMREFHEREESEFEMERR

3.1 BEMMNFHEKER

W= (14) 7R, LA T BRI 1.275y, R 2280
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f(x) = xle® (14)

1 BERMFEHLE KT

Tab.1 Function of proposed wirelength model

PRI f(x)=xle"™ k>0
e/ IME S, x = 1/k
T R [0,1/(exk) ]

R [0,1/k] T, [k,+) |

P 8 B 3y B R AL (15) , Hdy,,. .
V i A2 A VA S RS- T T 990 2 15 11 y BU(E 1
BT B,y A U R S 7E P 3 Z [ 28 Ak s« R 3%
2R 1 SR B Ly B AR A 0 UL 1, BT UL B
A (15),y AT RASEIHE T o 19 35 W 98 5
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SCON|
35k
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Bl oy M#E & KA A E s Al
Fig.1 The self-adaptive y with different half=perimeter

wirelength

Y = =2 (YVou = Vi) X

exp{ =/ [1.275(Y s + Vi) I} + Vi

12X (15) W B ANAL -2 28 A A oy, BIAT £
F) — OB B9 B & BN ACE 2 4K (self-adaptive
weighted—average wirelength, SaWAWL) BRI R[] F
LG IO B R KAy T 1 R 1 — 5 —
(4 y , AR 25 B T v ) B AR % 4 43 T — A ST 1Y
LA ARG L S PR A R 3 0 R, DT AE
42 Jai A1 Jr 1t B IR 2 AR/ NR 22 100G HPW L 1 ] i
PRI B B AR R SRE SN 3. 2 P
32 EFSaWAWLHERGEE

BT A SCHR Y SaWAWL A 50 A1 Sk [21 ] v
SEER A H AT e E ) DREAMPlace FE4L, SEEL T Hr
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PRARH AT LA B I ) £ 5 R0 S ) (5 1 i B, 23
JA SR LR y AR, JF T H A B 0 AT 5 45
K, L E AN SR Ik B R SR

F2 BERMEHEKEREETHR
Tab.2 Algorithm of proposed wirelength model
FrEE s S RACTE L K

FA cy BUBEIL Ry s Ve B ELEEK S b0
while k<K do

(15)

%, max (net_k)
X, min (net_k)

o xmux’_ xmm

YT Y

WL« WAWL(x,y)
kA++

end

R BRT y R B IIALE A2 I
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Tab.3 Algorithm of SaWAWL based global placement

B 2 LT SaWAWL 14 Jay A3 Joy 30k
HA By Iy oY i 57 LEF BT S5 A stop_overflow
Btk :

RN AR

While % E£ %5 H > stop_overflow do
fore € E do

WL, < 0;
x, <= HPWL(x), y, < HPWL(y);

v, —v(x). v, < v(y)s
x,; < WAWL(x,,v,); y. < WAWL(y,,v,)
WL, < v+ yas
WL, < WL, + WL,;
end for

HHWL= > WL
eek

it M ie/ME WL + A X density_penalty;
X,y
QG AERi R

Return (1", f*)

4 KWMSEELWHER

4.1 KIWINE

A ST 250 TR 98 RTX3090 1R 1Y
YRR K 2.7GHz Linux IR 55 #5 56 A, F8 A% ] H Python
FI CUDA B g B2 52 B . A0 JRy S 3 A6 ) 32 A mT (1 IF
JEEESE DAC 2012 JSEfEEMAERS | iE4T

XA SCA SR A% 5 Y W R ST HE R A R A R A
DREAMPlace #47— R LESLE , DASSUE T £ H Y
2R KA A (40 8P . DREAMPlace A A [A] AU RRAS , A
S5 2K FH 1Y & DREAMPlace—Master. A T 15 W& 75
LRI 4 Ry A SR 45 SR I R ), G P LA 1 AR
BB DP, 3% & 5 DREAMPlace 58 44 [7] B9 45
1R AR A% B 3 2518 (stop overflow ) , DA T AR SIE A
) 1Y LG 500 .
42 HEEFHEER

SaWAWL (45 78 {5 T 45 S an 181 2 e 7, J&1 ity
LR 7R T WAWL I SaWAWL X HPWL A5 45
MR LUE W, ELL R AR X TR N, WAWL AN BE
AR 1 3T DL HPWL, 1M SaWAWL I 52 P T X HPWL
BT B, XA A1 Sy 3 2o 44 b DX 1] Py ) o 81
&/ MECAE 1), /N TR LA 25 K3 8

AR T PR R AR X HPWL (915 22 IR SE T 48 3C
VR S AT LS BB/ N DR 22

200 b T BCTZK
75| TORAKAK
ST &Ry T4 K
g 150F
= -
5 125 .
w100 - Pprad
d"\’( 7
§ 75T e p
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Fig.2 Simulation result of wirelength models
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Fig.3 Error curve of wirelength models
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&l 4 (a) TR B B, bR ST B vh o0 A 5 7EA6
AT R o, A0 Jm) 5K 4 TP AR A T BT A 4y
L, & 4(b) VK 4(e) IR, IF A5 8] T hrifE
IS R A AL, i 4(d) R

A4 SRy AT Ry () S 90 235 R LR 4. 3% 4 (1 22
AT BAESE DAC 2012 (3EAE B, , i T Ji% %K
PR TS T 523k 1730 1 014k T3, AR E
PE.RAWA MR T AR SR 5 T Rk
K IK Bl 42 R A5 J5 %% DREAMPlace 9 % H 552 56 2%
AL R S T 0 A R A A B, SR AR SO 4
SaWAWL R (1 43 Joy i SE B T 5 )G ) A Jey &5 28 < 76
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(b)

(d)
H4 SB2#y& kA FiLAe
Fig.4 Four stages of global placement on dataset SB2

x4 ETDACHORHEENEBHE/LBRLER
Tab.4 Results of global placement based on DAC 2012

benchmarks
Design nodes nets M our Dift/%
DREAMPlace
SB2 1014k 991k 56.98 56.20 -1.37
SB3 920k 898k 28.34 27.79 -1.94
SB6 1014k 1007k 29.97 29.72 -0.83
SB7 1365k 1340k 35.52 34.43 -3.69
SB9 847k 936k 20.56 20.49 -0.34
SB11 955k 1293k 31.36 31.22 -0.45
SB14 635k 620k 20.66 20.23 -2.08
SB16 699k 697k 23.90 23.51 -1.63
SB19 523k 512k 13.37 13.00 -2.77
Norm — — — — -1.68

T T B ISR R 42 R A3 S5y A 52, AT 4 S g PR 5T v
BATT3CHR (21 ] h S AR SR , S8 5 Sek [ 21 M Re— 2, S
O I6R F 78 Rl 1 2 B P ERA S HOR

RSP T — i FH Tl R AR pi L i 42 SR

A3 Je R B 1A 38 R AINA P B 4 KA AL AR B AR 1R
Th i REAS 1 PR AE LS PR B 3 N M I R
B, 764 Ja A7 Jmy i B2 PR B M AU HPWL. 1 45
FMH, 5 R e it ) WAWL A BT L, AR SC A 8 i
FERVAT ST /N LG 12 25 LT DAC 2012 FFiEE
HER 42 Jm A JR SR g 45 SRR W] 5L T SaWAWL iy 42 )Ry
A Jay A LL T WAWL ) DREAMPlace 7] U3 51 4F
A SRy 25 5 TR T B L AR ) A
AL B 264 3K B 19 A )Ry 7 (wirelength—
driven placement, WDP )25 [EY) PRI 1 Hh 1) 45 101
BhR, QI DOAE AT AR 2 MR A5, i 8 SR S A f
3 R A B AR AL L A (B R 7% 52 2R Y
PEREFE AR, T — D0 A TR BARTE b i )37 3K
AR 53572 (timing—driven placement, TDP)ffF5% .
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