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一种基于证据理论的主动学习可靠性分析方法
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摘 要：针对具有单个失效模式、认知不确定性和“黑箱”模型特点的可靠性分析问题，提

出了一种基于证据理论的主动学习可靠性分析方法，能够高效高精度地求解结构的可信度和

似真度 . 通过证据理论对认知不确定性变量进行处理，抽取初始训练样本构建初始 Kriging 模

型，将优化方法与主动学习过程相结合，实现在整个输入变量空间中搜索最佳训练样本，利用

最佳训练样本对 Kriging 模型进行优化，通过优化后的 Kriging 模型代替功能函数，对未知点进

行预测，以实现结构的可信度和似真度计算 . 该方法将优化方法与主动学习过程相结合，降低

了传统方法搜索训练样本时对候选样本位置的约束，能够搜索到对 Kriging模型优化效果更好

的训练样本，提升了 Kriging 模型构建的效率和成功率 . 数值算例证明了该方法具有良好的计

算效果，并将其应用于车辆正面碰撞的可靠性分析 .
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Abstract：For the reliability analysis problem characterized by a single failure mode， cognitive uncertainty， 
and “black-box” models， an active learning reliability analysis method based on evidence theory is proposed. This 
method efficiently and accurately determines the credibility and verisimilitude of structures. It handles cognitive 
uncertain variables using evidence theory， initiates initial training sample construction for a Kriging model， and 
combines optimization methods with active learning to search for optimal training samples across the entire input 
variable space. This approach refines the Kriging model chronically with optimal training samples， replacing the 
functional function with the Kriging model to predict unknown points for credibility and verisimilitude calculation of 
the structure. By integrating optimization methods with active learning， the method relaxes constraints on candidate 
sample locations during traditional training sample search， thereby identifying training samples that better enhance 
the Kriging model’s correction effects and improve the efficiency and success rate of Kriging model construction. 
Numerical examples demonstrate the method’s computational effectiveness and its application to the reliability 
analysis of vehicle frontal collisions.
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在实际工程问题中，由于测量条件受限、制造精

度不足和服役环境多变等因素的影响，会产生各种

不确定性 . 这些不确定性在多数情况下表现为均值

附近的小范围波动，但是，结构运行的安全性可能因

为多源不确定性的影响而发生波动，甚至失效 . 因
此，采用恰当的方法量化和控制不确定性对于确保

结构安全性至关重要 . 基于对信息的掌握情况，不确

定性可以分为两类［1］. 一类是随机不确定性，基于系

统内部的随机过程或外部随机事件的影响而产

生［2］，通常通过概率密度函数表征 . 另一类是认知不

确定性，主要受当前认知水平和测量工具等限制，没

有足够的信息表征不确定变量的分布类型 . 目前用

于处理认知不确定性的理论有：证据理论［3］、区间分

析理论［4］、模糊集理论［5］和可能性理论［6］等 . 相比之

下，证据理论使用灵活的识别框架和基本可信度分

配函数表征不确定信息，是当前用于解决认知不确

定性的主要方法之一 .
证据理论于 1967年由 Dempster提出，经过其学

生 Shafer 进一步研究与发展，也被称为 Dempster-
Shafer（D-S）理论［7］. 由于认知不确定性的存在，证据

理论使用可信度函数（belief function，Bel）和似真度

函数（plausibility function，Pl）组成的信度区间共同

量化不确定性，不同于概率理论使用单一的失效概

率描述随机不确定性 . 证据理论使用基本可信度分

配（basic probability assignment，BPA）函数量化认知

不确定性，该函数是定义在集合上的可信度分配函

数 . 当信息量足够多以至于能够获得概率密度函数

时，证据理论近似等效于概率理论；反之，当信息量

减少到只有上下界时，证据理论近似等效于区间分

析理论［8］. 然而，基本可信度分配函数是定义于集合

上的非连续函数，使得基于证据理论的可靠性分析

需要对不确定域内每个集合上的功能函数进行极值

分析，因此，近年来，如何提升基于证据理论的可靠

性分析的计算效率成为该领域的研究重点之一［9-10］. 
为此，同行学者提出了不同的求解策略，包括：顶点

法、焦元削减法、概率等价法和代理模型法等 .
顶点法：该方法最早由 Dong 等［11］提出 . 该方法

考虑到在实际工程问题中，不确定性是以设计值为

中心的小范围波动，将其分配到焦元内部后波动范

围再次缩小 . 所以该方法以极限状态函数在焦元的

微小范围内，非线性影响很小的前提，借助求解焦元

顶点位置的响应值实现焦元类型的判断［12］. 顶点法

相比于传统方法计算效率更高，结果鲁棒性强［13］. 但
是顶点法需要计算所有焦元顶点的值，面对维度较

高的证据可靠性分析问题， 仍然存在沉重的计算

负担 .
焦元削减法：该方法通过非概率可靠性指标构

造了不确定域内的一个辅助区域，落入该区域的焦

元不需要计算功能函数的极值，从而降低计算成

本［14］. 在证据可靠性分析中，很多工程问题的可靠度

通常很高（P r ≥ 99%），可以断定大部分的焦元位于

安全域，安全域内的焦元不再需要极值分析，从而大

幅减少计算成本［15］. Mourelatos等［16］将顺序划分策略

用于焦元和可靠域之间关系的识别，提升了计算

效率 .
概率等价法：类似于概率理论中的最可能失效

点，姜潮等［17］提出针对证据理论可靠性分析的最可

能失效焦元，该焦元对证据理论可信度与似真度的

计算具有重要贡献度 . Xiao 等［18］依据证据变量中

BPA 的面积与随机变量的 PDF 相等，提出两者之间

的转换方法，能够实现在证据空间中稳定且准确地

搜索到最可能失效焦元 . Zhang 等［19］以最大可能失

效焦元为中心，使用一阶泰勒级数展开和二阶泰勒

级数展开，提出证据理论可靠性分析的一次二阶矩

法和二次二阶矩法，高效地实现了结构可靠度计算 .
代理模型法：实际工程的“黑箱”问题，结构功能

函数调用通常只能借助有限元仿真或者计算流体力

学等方法实现 . 但是，对于某些复杂模型，如高铁或

者飞机，单次仿真需要几天甚至几个月时间 . 使用传

统证据可靠性分析方法解决此类问题，所需的计算

成本难以接受 . 面对耗时且昂贵的实验或者仿真计

算，很多学者通过构建代理模型替代原来的实验或

者有限元仿真，大幅减少计算成本同时也有效地实

现了可靠性分析的目的 . Bae 等［20］用多点逼近法通

过在设计空间中选择一系列局部近似点构建极限状

态函数的代理模型，通过代理模型取代了昂贵的结

121



湖南大学学报（自然科学版） 2025 年

构仿真 . Zhang等［21］借助实验设计技术，搜索重要控

制点，并基于控制点构建高精度的径向基函数响应

面，高效地完成了可靠性计算 . 曹亮等［22］借助支持向

量回归构建隐示功能函数的近似模型 . Yin 等［23］借
助均匀性方法为每个证据变量创建概率密度函数，

使用多项式混沌展开来近似模拟证据变量变化范围

内的声学系统响应，然后基于多项式混沌展开，通过

数值求解器高效地完成所有焦元响应的上下界

计算 .
Kriging 模型是一种高精度的代理模型，通过显

式高斯随机场逼近实际工程中的“黑箱”模型，能够

提供未知点的最佳线性估计和预测误差［24， 25］. 为了

提高 Kriging模型的精度，学者们引入了主动学习过

程，使得具有主动学习过程的 Kriging模型在可靠性

分析领域被广泛应用［26， 27］. Yang等［28］提出了证据理

论框架下的主动学习 Kriging的可靠性分析方法，该

方法使用主动学习Kriging模型为功能函数提供正确

符号预测焦元以判断焦元类型，此外为了提高求解

焦元极值的准确率和效率，基于卡罗需-库恩-塔克

条件提出了KKTO优化方法 . Zhang等［29］以U学习函

数为基础，根据基本变量的 BPA 将原证据空间进行

细分，然后确定功能函数与细分得到空间的交点，通

过交点构建 Kriging 模型，再用拉丁超立方抽样法

（Latin hypercube sampling，LHS）生成额外的样本点，

以提高初始Kriging模型的准确性 . Yang等［30］提出一

种新的学习函数 UET（uncertainty estimation tech⁃
nique），使用识别功能函数的下限或上限预测符号

错误的概率最大的焦元，通过实时监控预测误差，及

时终止学习过程；陈泽权［31］从快速满足全局收敛条

件的角度出发，基于 Kriging believer 准则及重要性

抽样原理，提出了自适应结构可靠性分析的快速收

敛策略 .
传统基于Kriging模型的证据可靠性分析方法在

构建 Kriging模型过程中，通常抽样一定数量的样本

作为候选样本，然后从确定的候选样本中搜索训练

样本［30， 32］，在文中称其为样本点法，该方法搜索到最

佳训练样本的概率较小，导致模型构建效率下降，甚

至失效 . 因此提出了一种基于证据理论的主动学习

可靠性分析方法，将优化方法和主动学习过程相结

合，从整个输入变量空间中自适应地搜索训练样本，

降低了传统方法对训练样本的约束，大幅提高搜索

到最佳训练样本的概率，进而达到提升 Kriging模型

构建效率和成功率的效果 .本文的主要内容为：第 1
章阐述了证据可靠性分析的基本理论；第 2 章介绍

了主动学习 Kriging 模型；第 3 章阐述所提方法的算

法构造；第 4章通过算例验证了本文方法的可行性；

第5章为文本的结论和未来期望 .

1   证据可靠性分析基本理论

在实际的结构可靠性分析中，通常需要使结构

满足一定的功能特性，比如：强度、挠度、硬度等 . 所
需要满足的功能特性即功能函数，用 g (X ) 表示 . 向
量 X = { X1，X2，⋯，Xn }表示与结构有关的多维证据

变量的集合，在文中表示证据变量 .
g ( )X = g ( )X1，X2，⋯，Xn （1）
根据设计的结构是否满足某个功能特性，可以

将不确定性输入变量组成的空间划分为安全域 G =
{ g|g (X ) > 0 } 和 失 效 域 F = { g|g (X ) ≤ 0 }，如 图 1
所示 .

在证据理论框架下进行可靠性分析，首先，定义

每个变量X.定义识别框架Θ = { x1，x2，⋯，xi，⋯，xn }. 
xi 为识别框架 Θ 的一个事件或元素，n 为元素个数，

i = 1，2，⋯，n. 识别框架中识别的含义是：对于一个

命题，从与之相关的所有可能结果中区分并唯一区

分出正确的解答 .识别框架中的所有基本元素构成

一个幂集Ω (X ).基本可信度分配m用于描述命题的

可信任程度，类似于概率理论中的概率密度函数 .设
Θ 为识别框架，则基本可信度分配 m 定义为从集合

Ω (X ) 到 [ 0，1]的映射函数，即 m：Ω (X ) → [ 0，1]. 然
后，对证据变量的每一个焦元定义基本可信度分配 . 
当信息来源于多个专家或者系统时，则需要使用信

息融合的方式对多条信息进行融合，求解每个焦元

的基本可信度分配［33］.
多数情况下，结构的功能特性会受到多个输入

变量的影响，需要建立多维证据变量的联合识别框

图1   安全域与失效域示意图

Fig.1   Safety domain and failure domain diagram
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架和联合基本可信度分配［8］. 当认知不确定性变量

之间相互独立，对于N维输入变量，可以使用笛卡儿

乘积的方式求解，如式（2）：

Θ = Ω ( X1 ) × Ω ( X2 ) × ⋯ × Ω ( XN ) =
{( AX1 × AX2 × ⋯ × AXN

) } （2）
式中：Θ为联合识别框架；AX1，AX2，…，AXN

分别表示第

1 个，第 2 个，…，第 N 个证据变量的焦元；Ω ( X1 )，
Ω ( X2 )，…，Ω ( XN ) 分别表示第 1 个，第 2 个，…，第 N
个输入变量的识别框架 . 联合焦元的求解：

AX = AX1 × AX2 × ⋯ × AXN
（3）

因为 AX1，AX2，…，AXN
都是区间，所以 AX 是一个 N

维的空间 . 联合基本可信度分配的求解：

m ( AX ) =
ì
í
î

m ( AX1 )·m ( AX2 )·⋯·m ( AXN
)，AXi

∈ Ω ( Xi )
0，其他

（4）
获得证据变量的联合基本可信度分配以及安全

域之后，便可以对结构进行可信度和似真度的求

解［34］. 证据理论框架下，结构可靠度的求解公式

如式（5）：

ì

í

î

ïïïï

ïïïï

Bel (G ) = ∑
AX ⊆ G

m ( AX )
Pl (G ) = ∑

AX ∩ G ≠ ∅
m ( AX ) （5）

根据式（5），在求解可信度和似真度之前要先确

定焦元 AX 与安全域G的位置关系，表明焦元 AX 完全

还是部分位于安全域内部，或者AX在安全域外 .为了

能够准确地判断焦元 AX 与安全域的位置关系，需要

先求解功能函数g (X ) 在每一个焦元AX上的极值 .
[ gmin，gmax ] = [ min

X ∈ AX

g (X )，max
X ∈ AX

g (X ) ] （6）
目前求解极值的方法主要有顶点法和优化算

法，鉴于大部分工程问题中，结构的极限状态函数通

常表现出较强的非线性，为了减小非线性对可靠度

计算结果的影响，通常采用 SQP（sequential quadratic 
programming）优化算法对每一个AX求解极值 .

求解出每一个焦元的极大值和极小值后，根据      
AX的极值分析AX与极限状态面的位置关系 .如图2（a），
以焦元AX 为例，AX 的极小值大于 0，表明AX 全部位于

安全域内，在计算安全性时，AX 需要同时计入Bel (G )
和Pl (G ) 中；图 2（b）中，AX 的极大值小于 0，表明AX 完

全位于失效域内，在计算安全性时，AX 不计入Bel (G )
和Pl (G ) 中； 图 2（c）中，AX 的极大值大于 0，极小值小

于0，由此可以推断，AX部分位于安全域内，部分位于

失效域内，属于边界焦元，AX 只计入 Pl (G ) 不计入

Bel (G ).
通过以上方法，逐个完成对所有焦元的分类，然

后代入式（5）计算，结合 Bel (G ) ≤ P (G ) ≤ Pl (G )，得
到结构可靠度P (G ) 的范围［21］. 在极值的分析过程中

往往会产生大量的计算成本，随着维度的增加，焦元

数量指数级增长，给可靠性分析带来巨大挑战 .

2   主动学习Kriging模型

Kriging 模型是一种常用的空间插值方法，可以

根据已知数据点的空间分布估计未知位置的数

值［25］. Kriging 模型的预测功能是基于协方差函数来

建立空间数据之间的相似性关系，借助数据之间的

相关性与空间距离的关系，根据距离越近的数据之

间的相关性越高原则，拟合已知数据点的空间半变

异函数进行预测 .
2.1   基本概念

给定一组有 n 个的设计点 X = [ x1，x2，⋯，xn ]T，
其中 xi ∈ IRn，对应X的响应值Y = [ y1，y2，⋯，yn ]T，其

中 yi ∈ IRq. 设计点 X 以及响应值都满足规范化

条件［27］.
G (X ) = f T ( x ) β + Z ( x ) （7）

式中：f ( x ) = [ f1 ( x )，f2 ( x )，⋯，fn ( x ) ]T，表示均值函

数，反映模型的回归趋势，f ( x ) 的值在本文中实际为

单位向量 I，即一个长度为 n 的单位列向量；β =
[ β1，β2，⋯，βn ]T 是系数向量；Z ( x ) 是具有零均值的平

稳高斯随机过程，可以表示为 N (0，σ2 )，描述了模型

与其潜在趋势的偏离程度 . 在实践中，平均函数最常

见的形式是常数或者是以 x为输入的线性函数，文中

采用的是常数均值 .
协方差函数的作用是捕捉 G (X )与平均值的偏

离程度 . 除此之外，协方差可以调节这些偏差的大

小、G (X )的粗糙度和纵向偏离的尺度 . 关于各种协

方差函数，统计学中经常使用马氏协方差，在涉及确

           （a）可靠焦元               （b）失效焦元                  （c）边界焦元

图2   焦元与极限状态函数的可能位置关系

Fig.2   Potential relationships between focal elements and limit 
state functions
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定性计算机模型近似时，高斯协方差函数的使用可

以大大地降低计算的成本，故高斯协方差占主导

地位 .
在高斯随机过程中，两个样本点之间的协方差

函数表示如式（8）：

Cov(Z ( xi )，Z ( xj ) ) = σ2 R ( xi，xj：θ ) （8）
式中：R是描述 xi 与 xj 之间相关性的相关函数；σ2 表
示随机过程的方差 . 用高斯方法表示如式（9）：

R ( xi，xj：θ ) = ∏
i = 1

n exp [-θl ( xi，l - xj，l )2 ] （9）
式中：n表示变量的维数；xi，l和 xj，l分别是 xi和 xj的第 l
个变量；θl 表示相关参数，该参数控制着样本点 xi 和

xj之间第 l个变量的相关性 .
基于现有的样本点，可以计算得到回归系数 β

以及随机过程方差σ2的估计值：

β̂ = (ATR-1A)-1ATR-1Y （10）
σ̂2 = 1

k (Y - β̂A) TR-1 (Y - β̂A) （11）
式中：A是 k × 1的向量，里面所有的元素为 1；Y为列

向量；R为相关矩阵， 通过相关参数求得 . 相关参数

的确定方式有交叉验证法和最大似然估计法，在大

部分文献中借助的是最大似然估计法 . 通过最大似

然估计计算如下：

θl = arg min
θl

( | R |
1
p σ̂2 ) （12）

式中：p为训练样本的总数 . 通过足够的训练样本得

到满足精度要求的 Kriging模型之后，可以基于现有

的模型对任意未知点进行预测 . 其中预测过程不仅

可以得到未知点的值，而且能够得到预测值的波动

范围 . 预测的最佳线性无偏估计和方差如下：

μ̂ ( x ) = β̂ + r0R-1 (Y - β̂A) （13）
σ̂2 ( x ) = σ̂2[ ]A + μT (ATR-1A)-1 μ - r0 TR-1r0 （14）

式 中 ： r0 为 相 关 系 数 向 量 ， r0 =
[ R ( x0，x1 )，R ( x0，x2 )，⋯，R ( x0，xk ) ]T，预 测 的 均 值 为

μ = ATR-1r0 - A. 预测点的方差可以用于评估预测值

的波动范围 . 方差越小代表波动越小，得到的预测误

差越小 .
2.2   学习准则

在大多数情况下，仅通过初始训练样本构建的

初始 Kriging 模型，其精度通常较低 . 若直接使用初

始 Kriging模型进行可靠性分析，将不可避免地产生

显著误差，进而引发工程问题的失败 . 面对这类问

题，研究人员通常会寻找一些适当的点来加入训练

集，以便更新和修正Kriging模型 . 在输入样本集中，

寻找合适的样本点加入训练集中的准则，称为加点

准则 . 因为这是主动寻找样本点的过程，所以称之为

主动学习 . 目前常见的加点准则有：高效的全局优化

（efficient global optimization，EGO）准则，使用期望改

进作为搜索点的选择标准，把期望改进最大的点作

为新的训练样本；在使用 Kriging模型计算函数的极

值时，通过期望改进函数（expected improvement func⁃
tion，EIF）准则构造学习函数，在能最大程度改进当

前极值的地方增加训练样本；结合 Kriging模型和蒙

特卡罗的主动学习可靠性分析方法（U准则），使用U
学习函数在功能函数的符号误判概率最大的地方增

加训练样本［31］.

3   算法构造

本文提出的算法主要围绕基于证据理论的主动

学习Kriging模型展开 .首先，利用拉丁超立方抽样生

成初始训练样本，确保样本均匀分布在整个输入变

量空间中 .接着，构建初始 Kriging模型，并结合优化

方法与主动学习过程，通过 U 学习函数识别需要修

正的区域，利用内点法优化算法在整个输入变量空

间中搜索最佳训练样本，以修正和优化Kriging模型 .
然后，采用区间蒙特卡罗抽样方法减轻高维问题的

计算负担，并对焦元进行分类，计算结构的可信度和

似真度 .整个算法流程包括证据理论处理认知不确

定性、Kriging 模型构建与更新以及可信度和似真度

的计算，通过提高Kriging模型的构建效率和成功率，

降低传统方法中搜索训练样本的约束，从而有效解

决可靠性分析问题 .
3.1   主动学习Kriging模型

主动学习 Kriging 模型的构建主要包括：确定初

始训练集、利用初始训练集构建初始的Kriging模型、

结合优化方法和主动学习过程搜索最佳训练样本、

依据停止条件判断Kriging模型的精度 . 构建主动学

习Kriing模型的具体流程如下：

由于在“黑箱”模型中，在进行采样时无法判断

在 Kriging模型中什么区域需要更多的样本点，什么

区域需要更少的样本点 .所以初始训练样本的采样

原则期望尽可能使其均匀地分布在整个输入变量空

间 .故采用拉丁超立方抽样，该抽样方法常用于设计

实验和可靠性分析 .优点是：能够提供较好的抽样均

匀性和覆盖性，有效捕捉多个变量之间的关系；在相

同的样本数量下，LHS 可以提供更多的信息和数据

密度 . 在利用 LHS 时，首先在 N 维的超立方空间
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[ 0，1]N 中抽取 n个样本；然后将这 n个样本映射到输

入变量空间中抽取样本，将其记为X in，根据经验，抽

取的样本数量 n = (N + 1) (N + 2) /2；最后利用 X in，

调用功能函数求解相应的响应值 g in，由X in和 g in组合

得到训练集 (X in，g in ).
构建 Kriging 模型时采用高斯型相关函数（也称

高斯核函数）.
根据2.1节中Kriging模型的建立过程，通过训练

集 (X in，g in )，可以计算得到回归系数 β以及随机过程

方差 σ2 的估计值，从而得到 Kriging 模型 ĝ (X ). 通过

ĝ (X ) 可以完成对输入变量空间内的任意点 x 的预

测 ，获 得 点 x 的 均 值
-g ( x )，方 差 σ2

ĝ ( x )，其 中

ĝ ( x ) ∼ N ( -g ( x )，σ2
ĝ ( x ) ).

通过 Kriging 模型不仅可以获得该点的预测值，

还可以得到预测值的偏离程度等重要信息 . 可靠性

分析是一个分类问题，可以通过未知焦元的符号判

断其类型，进而实现可靠度计算 . Kriging模型的功能

是为未知点处提供符号预测，并不需要输出极限状

态函数的真实值，从而构建一个局部逼近极限状态

面的局部Kriging模型 .
针对得到的初始 Kriging 模型，需要对其进行精

度判断，在 Kriging模型精度不够的区域加入训练样

本，修正 Kriging模型，使模型逼近真实的功能函数，

达到要求的精度 . 难点在于如何搜索到最佳的训练

样本 .
根据训练样本的特点，可以分为 3 类：第 1 类为

极限状态面附近的点，这一类训练样本的特点是预

测均值
-g ( x ) 在极限状态面附近，在预测工程中，预

测值有较大概率穿越极限状态面，导致符号预测错

误；第 2 类训练样本的不确定性程度高，即 σĝ ( x ) 过
大，这类训练样本预测值 ĝ ( x ) 的分布分散，其预测值

同样有较大的可能性穿越极限状态面；第 3 类训练

样本同时具备前两类训练样本的共同特征，仅仅考

虑均值和方差无法将其准确地找出来 .
搜索最佳训练样本策略如下：

通过拉丁超立方抽样（LHS）生成初始训练样

本，确保样本均匀分布；利用Kriging模型中U学习函

数判断预测输入变量的均值和方差的正确概率，识

别需要修正的区域；然后通过停止条件控制 Kriging
模型循环更新的精度；最后结合优化算法内点法，从

整个输入变量空间中搜索使预测均值或方差最小的

点，作为新的训练样本加入训练集中，以修正和优化

Kriging模型 .

3.1.1   U学习函数

U 学习函数最初是由 Echard 等［26］提出来的，可

以用于间接度量Kriging模型预测值符号错误概率的

大小，其公式如下：

U ( x ) = || -g ( x )
σĝ ( x ) （15）

式中：
-g ( x ) 代表点 x 的预测均值；σĝ ( x ) 代表预测标

准差 .
可靠性分析是一个二分类的过程，可以通过焦

元上极大值点和极小值点的正负判断焦元位于安全

域还是失效域内 . 所以Kriging模型符号预测的正确

率对可靠性计算的准确性有很大影响 . 虽然借助

σĝ ( x ) 的大小，可以简单地对符号预测错误的概率进

行判断，即 σĝ ( x ) 的值越大，符号预测错误的概率越

大；σĝ ( x ) 越小，符号预测错误的概率越小，但是这种

方式无法完成第 1类和第 3类训练样本的判断 . 为了

保 证 ĝ ( x ) 符 号 预 测 的 正 确 率 ，依 据

ĝ ( x ) ∼ N ( -g ( x )，σ2
ĝ ( x ) )，可以推导出 ĝ ( x ) 符号预测

正确率概率的计算公式［31］，如式（16）：

Φ (U ( x) ) =
ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

Φ ( )-g ( x )
σĝ( )x

，ĝ ( )x > 0

Φ ( )--g ( x )
σĝ( )x

，ĝ ( )x < 0
=

Pr{sign ( ĝ ( x) ) = sign (-g ( x ) )} = p

（16）

式中：Φ (·) 为标准高斯变量的累积分布函数；sign (·)
是符号函数；ĝ ( x ) 表示 g ( x ) 的预测值；sign ( ḡ ( x ) )表
示 g ( x ) 的符号预测；Pr{sign ( ĝ ( x) ) = sign ( ḡ ( x ) )}表
示Kriging模型预测的符号与真实功能函数符号相同

的概率 . 式（16）成立的根本条件是任意点 x 处

ĝ ( x ) ∼ N ( ḡ ( x )，σ2
ĝ ( x ) )，且 U ( x ) = || ḡ ( x ) /σĝ ( x ) 中

σĝ ( x ) 不等于0.
U学习函数用于判断符号预测正确概率，如图 3

所示，当预测均值 ḡ ( x ) = 2时，通过改变方差来获得

不同的概率密度函数 . U ( x ) 反映在 x 点处预测值

ĝ ( x ) 波动范围的大小，U ( x ) 越大，ĝ ( x ) 取值的波动范

围就越小 . 当预测均值 ḡ ( x ) = 2，σĝ ( x ) 为 0.5、1 和 2
时，U ( x ) 分别为 4、2和 1，对应的正态分布曲线分别

为实线、虚线和点画线 . 从分布曲线中可以明显地看

出实线的分布最集中，预测值 ĝ ( x ) 的波动范围最小，

对应的U ( x ) = 4，此时 ḡ ( x ) = 2 > 0，当预测值 ĝ ( x ) >
0时表示预测值与均值符号相同，根据正态分布的累
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积分布函数计算原理，图 3中实线与横轴大于 0的区

域面积代表预测值 ĝ ( x ) > 0 的概率，表明 Kriging 模

型 ĝ (X ) 在 x点处符号预测正确的概率，此时预测正

确的概率值为 p ≥ Φ (4)，即 p ≈ 1. 点画线的分布最

为分散，对应的预测值 ĝ ( x ) 的波动范围最大，其

U ( x ) = 1，同样的原理，点画线对应的符号预测正确

的概率为 p ≥ Φ (1)，即 p ≥ 0.841 3，表明该条件下，符

号预测错误的概率约为 16%. 对于虚线，ĝ ( x ) 的分布

相对点画线比较集中，它对应的U ( x ) = 2，其符号预

测正确的概率为 p ≥ Φ (2)，即p ≥ 0.977 2. 在相关文献

中，当Φ (U ( x ) ) =Φ (2) 时，可以认为有足够高的概率

Kriging 模型能够提供正确的符号预测 .当符号预测

为负号时，也可以做出以上同样的推断 .

3.1.2   停止条件

在Kriging模型更新的循环过程中，停止条件用来

控制模型的精度 .借助U学习函数衡量模型的精度，当

Kriging模型预测的U ( x ) 的最小值满足U ( x ) ≥ 2时，

可以认为 Kriging模型已经达到精度要求；当 Kriging
模型预测的U ( x ) 的最小值满足U ( x ) < 2时，则继续

加入新的训练样本修正Kriging模型 .
3.1.3   内点法优化

内点法（interior point method）是一类求解凸优

化问题的数值方法，通过在可行域内部进行迭代搜

索进而逼近最优解［35-37］. 基本思想是将原始问题转

化为一个带约束的优化问题，通过迭代的方式沿着

可行域的内部路径逐步逼近最优解 . 内点法的应用

在于从整个输入变量空间中搜索使U ( x ) 最小的点 .

min  U ( x )
s. t   [ ḡ ( x )，σ ĝ ( x ) ] = predictors( x，ĝ (X ) ) 
x = [ x1，.⋯，xi，⋯，xN ]
         xi = [ xL

i，xU
i ]

（17）

式中：U ( x ) = || ḡ ( x ) /σĝ ( x )；ĝ (X ) 表示Kriging模型；x

表示输入变量空间 X中的任意点；predictors(•) 是
Kriging 模型的预测函数；ḡ ( x ) 表示在输入变量为 x

时 ĝ (X ) 的预测均值；σĝ ( x ) 表示在输入变量为 x 时

ĝ (X ) 的预测误差 .
本文结合优化方法和主动学习过程，从整个输

入变量空间中搜索最佳训练样本，从而更好地提高

了Kriging模型的构建效率以及成功率 .
首先，根据不确定性确定证据输入变量空间X：

X =
é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú
X L1，X U1
 ⋮     ⋮
X L

i ，X U
i

 ⋮     ⋮
X L

N，X U
N

（18）

式中：X L
i 表示第 i个变量的下限值；X U

i 表示第 i个变

量的上限值 . 由求解空间X的中心点XC：

XC = é
ë
êêêê

X L1 + X U12 ，⋯，
X L

i + X U
i2 ，⋯，

X L
N + X U

N2
ù
û
úúúú

（19）
然后将中心点XC 作为优化的初始点X0，设置评

估次数以及容差，调用MATLAB中的 fmincon工具箱

进行最优化求解，根据式（17）输出 U（x）的最小值 . 
如果U ( )x 最小值< 2，该点即为下一个训练样本 .

xnext = arg min
x ∈ X

U ( x ) （20）
式中：xnext为下一个训练样本，即最佳训练样本 . 根据

以上主动学习过程，定位到最佳训练样本的位置 . 然
后根据 xnext 的值进行有限元仿真计算求解得到

gnext ( xnext )，并将 ( xnext，gnext ( xnext ) ) 作为新的训练样本加

入训练集 (X in，g in )中，修正Kriging模型，直到满足精

度要求 .
3.2   区间蒙特卡罗抽样

尽管使用Kriging模型能够大幅地降低计算的成

本和难度，但是在面对高维问题的时候，仍然会面临

沉重的计算负担 .对于复杂问题，构建的Kriging模型

同样会比较复杂，在未知点的预测解速度也会下降，

要完成大规模焦元的预测，可能花费几天的时间 . 实
现大规模焦元极值的计算对计算机的性能要求也会

大幅提升 . 因此，在计算可信度和似真度的过程中需

要借助区间蒙特卡罗模拟（Monte Carlo simulation，

图3   点 x处预测均值为2时，不同方差下正态分布图

Fig.3   Normal distribution plots at point x with predicted 
mean 2 under different variances
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MCS）［30］来减轻计算的压力 . MCS的关键在于如何生

成与基本可信度分配（BPA）相对应的区间样本 . 对
具有 N 个证据变量的输入变量，用区间蒙特卡罗抽

取Nmc个样本，具体步骤如下：

步骤1：初始化 i = 1，j = 1.
步骤 2：在区间 [ 0，1]上生成一个均匀分布的随

机数u.
步骤 3：如图 4 所示，对于第 j 个变量的第 i 次模

拟，生成区间样本 Akj

j ，其中 Akj

j ∈ [ A1
j，⋯，Anj

j ]，如果满

足 ∑
l = 1

kj - 1
m ( Al

j ) < u ≤ ∑
l = 1

kj

m ( Al
j )，其 中 l = 1，2，⋯，nj，且

∑
l = 1

0
m ( Al

j ) = 0，便可以将焦元 Akj

j 记为 Ai
j. 当抽取的样

本数量足够大，在 Ai
j 内生成的样本的概率等于

m ( Ai
j ).
步骤 4：对步骤 3 进行循环计算，直到满足 j =

N，i = Nmc.

3.3   可信度和似真度计算

在计算结构的可信度和似真度之前需要对焦元

进行分类 . 其中Kriging模型为区间MCS抽取的焦元

进行预测，考虑到功能函数的非线性，采用 SQP优化

算法对焦元的极值进行求解，由式（6）每一个焦元的

极值可以表示为 [ gmin，gmax ] =[ min
x ∈ Ai

ĝ (X )，max
x ∈ Ai

ĝ (X ) ]，
其中 ĝ (X ) 表示Kriging代理模型，Ai表示焦元 .

根据焦元极值进行分类，可以分为可靠焦元G =
Ai { Ai：[ gmin > 0，gmax > 0 ] } ；边 界 焦 元 B = Ai { Ai：

[ gmin < 0，gmax > 0 ] } 和 失 效 焦 元 F = Ai { Ai：[ gmin <
0，gmax < 0 ] }. 完成焦元分类之后，根据式（5），可信度

表示为 Bel (G ) = 1
Nmc

∑
i = 1

Nmc

G；似真度表示为 Pl (G ) =
1

Nmc
∑
i = 1

Nmc (G + B )，其中Nmc为使用区间蒙特卡洛从输入

变量空间中抽取的样本个数 .
3.4   算法流程总结

算法的基本流程如图 5 所示，主要分为 3 个模

块：第 1 个模块在证据理论框架下对认知不确定性

进行处理 . 第 2个模块Kriging模型的构建过程，其中

Kriging 模型的更新是难点，本文结合优化方法和主

动学习过程，实现最佳训练样本的搜索；第 3个模块

计算可信度和似真度，主要是进行 IMCS抽样和焦元

类别的判断，以及可信度和似真度的计算 .

4   算例验证

4.1   数值算例一

曲柄-滑块机构［38］通常用于工程机械中，其结构

如图 6所示 . 在本次可靠性分析中，考虑曲柄滑块机

构的材料强度与最大应力之间的差值 . 结构的基本

参数如下：杆 O1O2 的长度 a，杆 O2O3 的长度 b，杆
O2O3 为空心管，内径为 d1，外径为 d2，O1 和O3 之间垂

直距离（偏心距）为 e， μ 为摩擦系数 .在工作状态时

图4   第 j个变量的区间蒙特卡罗抽样示意图

Fig.4   The interval Monte Carlo sampling diagram for variable j

图5   基本算法流程

Fig.5   The basic algorithm flowchart
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滑块受到一个水平力，载荷为P. 结构的许用应力S =
2.1 GPa，极限状态函数如下：

g (a，b，P，e ) =
S - 4P (b - a )

π( (b - a ) 2 - e2 - μe ) (d22 - d21 ) （21）

曲柄-滑块机构杆 O1O2 和杆 O2O3 长度 a 和 b 的

BPA如表 1所示，承受的载荷 P及其偏心距 e所对应

的BPA如表2所示 .

基于变量信息，构建证据输入变量空间X. 每一

变量的范围为：X1 = [ 94，106 ]，X2 = [ 290，310 ]，X3 =
[ 220，280 ]，X4 = [100，150 ]；通过 LHS 从 X中抽取 15
个初始训练样本，代入功能函数 g (a，b，P，e ) 中求解

结构的响应值 g in，得到初始训练集 (X in，g in )；然后通

过 (X in，g in )构建初始 Kriging 模型 ĝ (X )；接下来利用

ĝ (X ) 提供预测，通过结合内点法和主动学习过程从

X中搜索最佳训练样本，判断 U ( x ) 的最小值是否满

足停止条件 U ( x ) ≥ 2，若满足停止条件，即可输出

Kriging 模型，否则继续更新 Kriging 模型直到所有

U ( x ) 的最小值满足U ( x ) ≥ 2.
为了验证本文方法中新增训练样本的修正效

果，将其与样本点法进行比较 . 在 Kriging 模型更新

过程中，样本点法搜索到的第一个训练样本对应的

U 函数值为 0.001 169，使用本文方法搜索到的第一

个训练样本 U 函数的值为 4.94×10-5，在同样的初始

样本下构建得到的 Kriging模型，采用本文方法搜索

到的第一个训练样本处，Kriging 模型的预测错误率

更大，在该位置处加入训练样本对 Kriging模型的修

正效果更好，表明本文方法搜索到的训练样本比样

本点法搜索到的训练样本修改效果更好 . 表 3 为样

本点法和本文方法构建Kriging模型使用的初始训练

样本和新增训练样本数量 . 样本点法和本文方法使

用相同的初始训练样本条件下，样本点法新增训练

样本为 14，一共用了 29 个训练样本，本文方法新增

训练样本数为 6，一共用了 21 个训练样本 . 相比之

下，本文方法使用训练样本数比样本点法有所减少，

表明本文方法Kriging模型构建的效率得到了一定的

提升 .

为了验证本文方法的计算效率，将其与优化

法［39］和样本点法进行对比 . 优化法［39］是一种传统的

证据可靠性分析方法，通常使用 SQP 优化算法对每

一个焦元求解极值，进而对焦元进行分类，实现可信

度和似真度的计算，该方法计算精度较高，通常作为

其他方法的参考 . 使用 SQP进行焦元极值计算时通

常需要调用功能函数几十次到几百次，文中用 t表示

优化法调用功能函数的次数 . 在计算可信度和似真

度时，采用了 IMCS进行抽样，样本规模为 1 × 105，优

化法调用功能函数次数为 t × 105. 样本点法和本文

方法使用 Kriging模型代替功能函数，因此功能函数

的调用次数为构建Kriging模型使用的样本数 . 可以

表2   载荷P和偏心距 e的BPA
Tab.2   Basic probability assignment of load P and 

eccentricity e

焦元

［220，230］
［230，240］
［240，250］
［250，260］
［260，270］
［270，280］

载荷P对应的

BPA/kN
0.1
0.2
0.2
0.2
0.2
0.1

焦元

［100，108.33］
［108.33，116.67］
［116.67，125］
［125，133.33］

［133.33，141.67］
［141.67，150］

偏心距 e对应

的BPA/mm
0.1
0.2
0.2
0.2
0.2
0.1

表1   杆长a和b的BPA
Tab.1   Basic probability assignment of rods a and b

焦元

［94，96］
［96，98］
［98，100］
［100，102］
［102，104］
［104，106］

杆长a对应的

BPA/mm
0.1
0.2
0.2
0.2
0.2
0.1

焦元

［290，293.33］
［293.33，296.67］
［296.67，300］
［300，303.33］

［303.33，306.67］
［306.67，310］

杆长 b对应的

BPA/mm
0.1
0.2
0.2
0.2
0.2
0.1

图6   曲柄-滑块机构示意图

Fig.6   Schematic diagram of crank-slider mechanism

表3   构建Kriging模型的初始训练样本数和

新增训练样本数

Tab.3   Initial training sample size and additional training
sample size for constructing Kriging models     个

计算方法

样本点法

本文方法

初始训练样本数

15
15

新增训练样本数

14
6

128



第 6 期 张哲等：一种基于证据理论的主动学习可靠性分析方法

得到样本点法和本文方法的功能函数调用次数分别

为 29 和 21. 通过对比，本文方法对功能函数的调用

次数最少，表明本文方法有较高的计算效率 .
表 4 为优化法、样本点法和本文方法的可靠性

分析结果及其相对误差 . 优化法计算的 Bel (G ) 为
0.891 8，Pl (G ) 为 0.997 83，以其为参考，样本点法计

算的 Bel (G ) 为 0.892 3，相对误差约为 0.056%，Pl (G )
为 0.998 1，相对误差约为 0.03%. 本文方法计算的

Bel (G ) 为 0.891 85，相对误差约为 0.006%，Pl (G ) 为
0.997 83，相对误差为 0. 可见本文方法有较高的计算

精度 . 通过这个算例可以看出本文方法可以用于解

决可靠性分析问题 .

4.2   数值算例二

以 13 个独立证据变量的组合梁结构的可靠性

分析问题为例［40］，验证本文方法在高维高非线性问

题中的适用性 . 组合梁的结构如图7所示 .
梁的杨氏模量为EW，截面的宽度为A、高度为B、

长度为 L. 梁下面安装的铝板，其杨氏模量为Ea，截面

的宽度为C、高度为D，其长度和梁一样，此外该铝板

固定在梁的底面 . 在梁的上方施加有外力 P1、P2 、
P3、P4、P5 和 P6，分别对应梁的 L1、L2、L3、L4、L5、L6 位

置，方向垂直于梁平面 . 许用的拉应力为 S. 梁承受

的最大应力出现在中间的截面M-M中，为了保证组

合梁的安全性，梁所承受的最大应力 σmax 必须小于

梁的最大许用应力 S，组合梁安全使用的功能函数

如下：

G ( X，Y ) = S - σmax （22）
其中组合梁承受的最大应力公式如下：

σmax = a1 Δ
a2 + a3

a1 =∑
i = 1

6 Pi ( L - Li )
L L3 - P1 ( L2 - L1 ) - P2 ( L3 - L2 )

a2 = 1
12 AB3 + AB ( Δ - 0.5B ) 2 + 1

12
Ea
EW

CD3

a3 = Ea
EW

CD (0.5D + B - Δ) 2

Δ =
0.5AB2 + Ea

EW
CD ( B + D )

AB + Ea
EW

CD

（23）
组合梁结构承受的载荷变量的 BPA 结构如       

表 5和表 6所示，梁的材料强度的BPA结构如表 7所

示，梁的截面尺寸变量的BPA结构如表 8所示，以及

铝板截面尺寸的BPA结构如表9所示 .

表 10 样本点法和本文方法构建 Kriging 模型时

的初始训练样本数和新增训练样本数 . 使用相同的

初始训练点得到初始 Kriging模型，样本点法没有完

成Kriging模型的更新，这是由于在更新过程中，样本

点法重复搜索到同一个训练样本，导致 Kriging模型

的更新过程无法继续进行 . 本文方法的初始训练样

表4   可靠性分析结果及其相对误差

Tab.4   Reliability analysis results and their relative errors

计算方法

优化法

样本点法

本文方法

计算结果

Bel（G）

0.891 80
0.892 30
0.891 85

Pl（G）

0.997 83
0.998 10
0.997 83

相对误差/%
Bel（G）

—

0.056
0.006

Pl（G）

—

0.03
0

图7   组合梁结构示意图［40］

Fig.7   Diagram of composite beam structure

表5   载荷变量P1，P2，P3的BPA
Tab.5   Basic probability assignment of P1，P2，P3

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P1对应的BPA/kN
0.1
0.2
0.3
0.2

0.15
0.05

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P2对应的BPA/kN
0.1
0.2
0.3
0.2

0.15
0.05

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P3对应的BPA/kN
0.1
0.2
0.3
0.2

0.15
0.05
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本数为 105，新增训练样本数为 83，一共使用 188 个

训练样本，对应的调用功能函数 188次 . 表明在高维

问题中，本文方法能够成功构建 Kriging模型并且有

较高的计算效率 .
表 11为优化法、样本点法和本文方法的计算结

果 . 样本点法因为没有成功构建 Kriging 模型，所以

没有得到可靠性分析结果 . 优化法计算的 Bel (G ) 为
0.812 83，Pl (G ) 为 0.996 11. 本文方法计算的 Bel (G )
为0.817 20，相对误差约为0.538%，Pl (G )为0.996 11，
相对误差为 0，可见本文方法有较高的计算精度 . 
该算例表明本文方法可以用于高维可靠性分析问

题的求解 .

4.3   车辆正面碰撞可靠性分析

将本文方法应用到车辆正面碰撞的可靠性分析

问题中，测试其在实际工程问题中的计算效果 . 在汽

车事故中，很大的比例是由汽车正面碰撞［41］造成的，

所以对汽车正面碰撞的安全性分析对保护人的生命

表6   载荷变量P4，P5，P6的BPA
Tab.6   Basic probability assignment of P4，P5，P6

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P4对应的BPA/kN
0.10
0.20
0.30
0.20
0.15
0.05

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P5对应的BPA/kN
0.10
0.20
0.30
0.20
0.15
0.05

焦元

［10.5，12］
［12，13.5］
［13.5，15］
［15，16.5］
［16.5，18］
［18，19.5］

P6对应的BPA/kN
0.10
0.20
0.30
0.20
0.15
0.05

表7   组合梁结构材料强度的BPA
Tab.7   Basic probability assignment of material strength

焦元

［49，56］
［56，63］
［63，70］
［70，77］
［77，84］
［84，91］

Ea对应的BPA/GPa
0.022 8
0.135 9
0.341 3
0.341 3
0.135 9
0.022 8

焦元

［6.125，7］
［7，7.875］

［7.875，8.75］
［8.75，9.625］
［9.625，10.5］
［10.5，11.375］

Ew对应的BPA/GPa
0.10
0.20
0.30
0.20
0.15
0.05

焦元

［17.15，19.6］
［19.6，22.05］
［22.05，24.5］
［24.5，26.95］
［26.95，29.45］
［29.45，31.9］

S对应的BPA/MPa
0.10
0.15
0.35
0.20
0.15
0.05

表8   梁截面尺寸的BPA
Tab.8   Basic probability assignment of beam cross-section 

dimensions

焦元

［99.7，99.8］
［99.8，99.9］
［99.9，100］
［100，100.1］
［100.1，100.2］
［100.2，100.3］

截面A对应的

BPA/mm
0.05
0.15
0.30
0.30
0.15
0.05

焦元

［199.7，199.8］
［199.8，199.9］
［199.9，200］
［200，200.1］
［200.1，200.2］
［200.2，200.3］

截面B对应的

BPA/mm
0.10
0.20
0.30
0.20
0.15
0.05

表9   铝板截面尺寸的BPA
Tab.9   Basic probability assignment of aluminum sheet 

cross-section dimensions

焦元

［79.7，79.8］
［79.8，79.9］
［79.9，80］
［80，80.1］
［80.1，80.2］
［80.2，80.3］

截面C对应的

BPA/mm
0.10
0.20
0.30
0.20
0.15
0.05

焦元

［19.7，19.8］
［19.8，19.9］
［19.9，20］
［20，20.1］
［20.1，20.2］
［20.2，20.3］

截面D对应的

BPA/mm
0.05
0.15
0.30
0.30
0.15
0.05

表10   构建Kriging模型的初始训练样本和新增训练样本数

Tab.10   Initial training sample size and additional training 
sample size for constructing Kriging models      个

计算方法

样本点法

本文方法

初始训练样本数

105
105

新增训练样本数

—

83

表11   可靠性分析结果及其相对误差

Tab.11   Reliability analysis results and their relative errors

计算方法

优化法

样本点法

本文方法

计算结果

Bel（G）

0.812 83
—

0.817 20

Pl（G）

0.996 11
—

0.996 11

相对误差/%
Bel（G）

—

—

0.538

Pl（G）

—

—

0
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健康安全有很大的意义 . 据分析，车辆正面碰撞时危

害主要来自车身的加速度 . 图 8 为车辆正面碰撞示

意图［41］，通过车辆的防撞梁、前轨、前轨罩和加强板

结构实现吸收碰撞能量的功能，其中防撞梁的厚度

为 t1，前轨的厚度为 t2，前轨罩的厚度为 t3，加强板的

厚度为 t4 及材料强度为E和密度为 ρ，它们均被看作

是证据变量而且两两之间是相互独立的，防撞梁的

结构尺寸、材料强度和密度的焦元及BPA如表 12和

表 13 所示 . 考虑加速度的影响，建立了功能函数

如下：

ga = amax - a ( t1，t2，t3，t4，E，ρ ) （24）
为了提高计算的效率，使用二次响应面法和拉

丁 超 立 方 设 计 构 建 了 加 速 度 的 响 应 面

a ( t1，t2，t3，t4，E，ρ )：

a ( t1，t2，t3，t4，E，ρ )=
346.886 2-5.091 3t1+3.562 7t2-6.957 8t3+
4.075 8t4-0.222E+0.852 1ρ-10.720 3t1 t2+
6.307 4t1 t3-0.874 2t1 t4+5.153t1 E+0.593 4t1 ρ+
4.388 2t2 t3+4.055 6t2 t4-5.174 5t2 E+9.576 3t2 ρ+
7.606 3t3 t4+3.273 6t3 E-3.576 6t3 ρ-1.137 9t4 E+
12.953 9t4 ρ-5.487 6Eρ+8.725 8t21+6.445 2t22-
7.041 7t23+10.190 1t24+16.009 1E2-4.055 7ρ2

（25）

表 14 为样本点法和本文方法构建 Kriging 模型

时的初始训练样本数和新增训练样本数 . 在相同的

初始训练样本下，样本点法的新增训练样本数为

153，一共使用 181个训练样本，即调用功能函数 181
次；本文方法新增训练样本数为 30，一共使用 58 个

训练样本，即调用功能函数 58 次，可见本文方法相

比于样本点法计算效率有一定的提升 .
表 15为使用优化法、样本点法和本文方法的计

算结果 . 优化法计算得到的Bel (G ) 为 0.922 29，Pl (G )
为0.996 78. 样本点法计算得到的Bel (G ) 为0.961 11，
相对误差约为 4.209%，Pl (G ) 为 0.961 11，相对误差

约为 3.579%，相对误差较大，计算结果失效 . 本文方

法计算得到的 Bel (G ) 为 0.961 27，相对误差约为

0.067%，Pl (G ) 为 0.996 81，相对误差约为 0.003%，可

见本文方法有较高的计算精度 .本文方法对车辆正

图8   车辆正面碰撞示意图

Fig.8   Diagram of frontal vehicle collision

表12   防撞梁尺寸的BPA
Tab.12   Basic probability assignment of bumper beam dimensions

焦元

［1.10，1.15］
［1.15，1.20］
［1.20，1.25］
［1.25，1.30］
［1.30，1.35］
［1.35，1.40］

t1对应的BPA/mm
0.202
0.486
0.100
0.080
0.070
0.070

焦元

［1.6，1.7］
［1.7，1.8］
［1.8，1.9］
［1.9，2.0］
［2.0，2.1］
［2.1，2.2］

t2对应的BPA/mm
0.061
0.072
0.367
0.367
0.072
0.061

焦元

［1.6，1.7］
［1.7，1.8］
［1.8，1.9］
［1.9，2.0］
［2.0，2.1］
［2.1，2.2］

t3对应的BPA/mm
0.061
0.072
0.367
0.367
0.072
0.061

表13   防撞梁尺寸及其材料强度和密度的BPA
Tab.13   Basic probability assignment of bumper beam dimensions、material strength and density

焦元

［1.85，2.0］
［2.0，2.15］
［2.15，2.25］
［2.25，2.40］
［2.40，2.50］
［2.50，2.55］

t4对应的BPA/mm
0.034
0.291
0.350
0.291
0.017
0.017

焦元

［1.85，1.90］
［1.90，1.95］
［1.95，2.00］
［2.00，2.05］
［2.05，2.10］
［2.10，2.15］

E对应的BPA/（×105 MPa）
0.10
0.15
0.35
0.15
0.15
0.10

焦元

［7.47，7.56］
［7.56，7.65］
［7.65，7.85］
［7.85，8.05］
［8.05，8.15］
［815，8.25］

ρ对应的BPA/（×106 kg·mm-3）
0.1
0.1
0.3
0.3
0.1
0.1

表14   构建Kriging模型的初始训练样本数和

新增训练样本数

Tab.14   Initial training sample size and additional training
sample size for constructing Kriging models      个

计算方法

样本点法

本文方法

初始训练样本数

28
28

新增训练样本数

153
30
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面碰撞的可靠性分析问题的成功求解，表明本文方

法具有一定的工程价值 .

5   结 论

本文提出了一种基于证据理论的主动学习可靠

性分析方法，该方法将优化方法和主动学习过程相

结合，从整个输入变量空间中搜索训练样本，确保每

一次搜索得到的训练样本为最佳训练样本，提高了

Kriging模型的构建效率和成功率 . 并通过数值算例

验证了该方法在解决可靠性分析问题的有效性，最

后将该方法应用到车辆正面碰撞的可靠性分析问题

中，成功完成了可靠性分析计算 . 可见，本文方法在

解决可靠性分析问题时有较高计算效率和计算精

度 . 在未来，希望本文方法能考虑变量之间的相关

性，解决更多的实际工程问题，此外将其拓展到混合

不确定性的可靠性分析问题中 .
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