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An Active Learning Reliability Analysis Method Based on Evidence Theory

ZHANG Zhe',BAO Wenli, YAO Zhongyang
(College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

Abstract: For the reliability analysis problem characterized by a single failure mode, cognitive uncertainty,
and “black—box” models, an active learning reliability analysis method based on evidence theory is proposed. This
method efficiently and accurately determines the credibility and verisimilitude of structures. It handles cognitive
uncertain variables using evidence theory, initiates initial training sample construction for a Kriging model, and
combines optimization methods with active learning to search for optimal training samples across the entire input
variable space. This approach refines the Kriging model chronically with optimal training samples, replacing the
functional function with the Kriging model to predict unknown points for credibility and verisimilitude calculation of
the structure. By integrating optimization methods with active learning, the method relaxes constraints on candidate
sample locations during traditional training sample search, thereby identifying training samples that better enhance
the Kriging model’ s correction effects and improve the efficiency and success rate of Kriging model construction.
Numerical examples demonstrate the method’ s computational effectiveness and its application to the reliability

analysis of vehicle frontal collisions.
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Fig.1 Safety domain and failure domain diagram
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7R Kriging #5578 F0 /) 4555 HL5 T RE pR AT 54 [+

U(x) (15)

D

,8(x)>0

2Un)- (16)

A 3. 2 (16) AL I AR AS 5 1 AT B A e b
)~ N@(x). o2(x), B Ulx) =|2o) |fer, (x)
Ug(x)x%ﬂ:O

U2 2] BB TR WA T L E A AR %, Gl 3
IR AT g () = 2B, 3 ok SO Ty 22k 3R A
N T 9 M 2R 4% B RV . U (o) B AE o 5 A0 T 00 41
g () WBITE FAY RN, U (o) KR, & () BUE A B 31
Fg /N Y WU g(x) = 2,0, (x) B 0.5, 1 F12
IF, U (x) 2050 0 4.2 F 1, %ok 02 1) 1 2543 A it 4823 1)
R R . A e ] U] R R
HH SR I 3 A e B v, BOAE & () 908 B9 LA/ )N
XL U (x) = 4, JBF g(x) = 2 > 0, G TE g («) >
0 B} 227 LI 5 (A AT 5 AR R] , AR5 1E 25 5310 1)
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RV A pR BSOS R B 18] 3 v s 4k SRR T 0 i IX
ol T AR T 2 (x) > 0 BIMER , £ B Kriging £
Y 6 (X)) FE oo JSALFF5 T5000 1E 6 ) A 5, 0 A 1000 1
ARG p > D(4), Bl p ~ 1. 500 R 10 40 A fie
O3 T, X L ) T & () 9 30 3 38 Rl 5 K,
U(x) = 1, [FIRE A D 5100 2 X607 14 45 ) 1
IHER K p = @(1), Bl p > 0.841 3, KWL LM T 45
SR AER AR N 16%. X T Lk, g (x) B0
FEXT SR FL AR S b X U () = 2, HfF 59
MEFIHESR N p = D(2),Bllp = 0.977 2. ZEAHFESCHR
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Fig.3 Normal distribution plots at point x with predicted

mean 2 under different variances

3.1.2 AFak&AE

1 Kriging BB BT AR ER L AR 458 11 2R PRI
FERIBALIRE R AR B U ] R B s AL ARG L, >
Kriging BRI TN Y U (x) B e/ IMELT 2 U (x) > 21,
A LAIAA Kriging £ 78S £ 28 35 ZIPDRS B2 225K 5 24 Kriging
BERITN A U (o) B B/ IMELH 2 U (o) < 20, U1 282
IMAFT BV ZREEAE IE Kriging B
3.1.3 A EEkEAR

N S 5 (interior point method ) & — R AR MR
A T) 1 5 D % 30 ek A P A A AR A kA
R T A T e DA AR AR AR ) R
ek —A~al A R AP AL ) A, e i kARG O U
RIAT IR AR e A 12 A T A A . PN T AR
TET IR A7 S8 28 [ R R U () /ML

min U(x)
s.t [g(x),0,(x)]= predictors(x, g(X)) (17)
% =%y, &y oy oy ]

x, = al, xV]
XU = |g(x) |/a'g(x);gr(X)i'§/f< Kriging #5785 x
2 AR 25 [a) X (AR B 5 predictors(+) J&
Kriging 15 84 (% T pR 2K 5 g (o) FR 7N TE i A S 1 0
I (X)) B BN BIE 5 o, (o) 75 70 B0 A S B hy o 10
(X)) Pl 2= .

RSB AT B B2 ) R, A
A a3 ] R R AR ZRRE A, T i 3R
T Kriging 58 (148 FERLCH DL R LT3

TG MRS ANE S PR TR A S A [A] X

XXy

X =|X- X! (18)

Xy, Xy
A X FOoRE BRI T R X FRoRE AR
Y EFRAE . H SR 2 (8] X A rhol XS
XC:[XHX} oXPsxt X%+X,E]
2 2 T2

(19)

SRIG R L i XA AR AR BRI iR A X, BB

FIRBA 252, 5 MATLAB W/ fmincon T 256

PEAT F AR A AR =0 (17) it U () B B/ IMEL
R U (x) e/ IME < 2, Zmi B — DI ZREEAS

Xy = aIg Enei? U(x) (20)

Aen, T —DUIGRFEAS, BV AR A . M4
Ph b FEghem i 8 O B AR A L 8. 9K
Jo AR ., B9 (E 24T A PR T 07 B 5K i 15 3
e (X )s A (%5 G (2,0 VERTBT B YN ZRAEAS T
AL (X, g.)F ABIE Kriging BAY | F 21355 2R
3.2 RiESEE+F e

U Kriging 15 7Y GE % A b B ARG 155 %) R
AFIMEE | {275 10T e 248 (7 R0 ) Bsf 46, 47588 2 T I
UE AT AR X T 52 2% ) 0, #4719 Kriging £
[FIRE 25 LUE IR A%, 70 A TRt ) F00000 fige i o 25 R e
BLSE U AE T A T, AT RE AL 2% JLR A IS [R] . S
IR RIS AL TR AR ) TS TSR M R Rkt 2
KMESE T . PR, 7R3 A5 B AR B B i i F b 5
TS B X ] 52 4 R 2 #40 (Monte Carlo simulation,
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MCS) g T R ) . MCS W DG HEAE T anfe] A=
5 AT A BE 4 BE (BPA ) FH XTI 1 X M) RE A . %of
HA NATEYEAS & 05 AR &, XRS5 2 il
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Fig.4 The interval Monte Carlo sampling diagram for variable j
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HEFT TN , 25 & B D) e pR B AR LM, R FH SQP 4L
ST FETC AR A A TSR A, =X (6) B —AN R 0TI
BAE AT AR N g 0> & 15 min 2(X), max g(X) ],
Horp g(X) R Kriging {C B A LIREETT .
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A{A:] g, >0,g,,>0]} 5 4 F &0 B=A{A"
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0, g, < 01} SEMAETCHHZ )G  MRIEA(S), AIFE

R Bel(C) =~ >G5 o £ IE % PICC) =

N1 i(G + B), Herf N, A T DX ) 4R 9 A

me ;=1
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SR BEA AR R 5 TR, BB N 3 AR
B 55 1 AMSEER AR TR HE P AE 2R R XN B
HEATRbTE . 45 2 M Kriging #5575 i pg  of A%, e
Kriging 155 1 (14 BRI & ME &, AR SCE5 A Ak D7 ik i 32
B2 ) R SE AR VI A A48 R 5 3 ik
TFE TR ERVRLE R, 2SI T IMCS $hAE F AT
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Fig.5 The basic algorithm flowchart
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W32 38— AR T, #fer K P %
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g(a,b,P,e) =

LSRRI S =

4P(b - a)
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Fig.6 Schematic diagram of crank-slider mechanism

AT RHLKI T 0,0, FFF 0,0, K B o 1 b 1Y
BPA 1R 1 J7R , 7K AZ (AT P S Al O B e Jf %) 7
[t BPA #1136 2 TR .

£1 FKaF1bBIBPA

Tab.1 Basic probability assignment of rods a and b

i FF& a X3 1 fst FF b %Y
BPA/mm BPA/mm
[94,96] 0.1 [290,293.33 ] 0.1
[96,98] 0.2 [293.33,296.67] 0.2
[98,100] 0.2 [296.67,300] 0.2
[100,102] 0.2 (300,303.33] 0.2
[102,104] 0.2 [303.33,306.67] 0.2
[104,106] 0.1 [306.67,310] 0.1

F2 HEFPMROEe R BPA
Tab.2 Basic probability assignment of load P and

eccentricity e

. FAT PRI Y _ Do e X1
£EIT fEIT
BPA/KN ) BPA/mm
[220,230] 0.1 [100,108.33] 0.1
[230,240] 0.2 [108.33,116.67] 0.2
[240,250] 0.2 [116.67,125] 0.2
[250,260] 0.2 [125,133.33] 0.2
[260,270] 0.2 [133.33,141.67] 0.2
[270,280] 0.1 [141.67,150] 0.1
A 8, R TR i AR A [B) XL R —
/Eiéﬁmljﬁljj:xl =[94,1061], X, :[290,310], . =
[220,2801, X, =[100, 150 |; 3@ izf LHS M\ X Hr 4l 3 15
MHIRINGAEAR  ACATIRE PR EL g (a, b, P, e) F 2K i
ER I N AE g, A3 B IR VI 2R 4R (X, 2, )3 2R )5 i
i (X, g ) W IR Kriging B8 2(X) ;422 F A

X) P BEIT0N , 38 2ok 45 G N AR 3l 2 2] R B A
XEPEE%W{%UH%#ZIK W U () 1Y Fie/IMEL A 75 1
AT R U () > 2, 250 2 A5 1k 25, B AT i
Kriging 155 Y | 45 U] ﬂi?;jéﬁ%ﬁ Kriging £ 7 B 1| fif A
U (x) e/ MEE 2 U (x) >

ﬁT?’\lEZIKXﬁFg‘EP%‘ﬂ WILRFEA B 1B E AL
B S REA SR T HURL . 7F Kriging #5250 T 5
AR A SR R BN 5 — A U R AE A X 1 1Y
U R EL{E 9 0.001 169, (i AR SCTT I R B 5 —
A VNGAEA U sRELIE N 4.94x107, £ [ 1947 1R
FEAT ¥4 EE 45 2 1) Kriging #7805 FHAR SCy 38 &
S — U GRAE AR AL, Kriging A5 78D () T 48 1 %
BEOR, AR AL E AL AN ZRFEA RS Kriging £ i) 52
IERCR A, RIIA SO A R BB YA A LU
A R R B I RFEABBUSCR B4 . K3 W
AR 1 B AR SO AR 7 Kriging #5814 FH (49400 46 )11 25
FEAFH S N ZRRE A RO | RS A A SO VAT
FHAH R BRI GG IR A SRAE T REAS S35 3 1S I 25
FEA 14, — 3] T 29 D YNZRFEAS , A SO 6 1
WEFEARBCR 6, —H T T 21 DUNRFEA . A L Z
T ARSOT A N ZRFEA B REAS R AT BT
FWIAICIT ¥k Kriging AU L 1GR3 T —E 1y
$EFt.

3 M Kriging I F N 54I| k e AR EAn
FE I SRAE AL

Tab.3 Initial training sample size and additional training

N

sample size for constructing Kriging models ]

R ViRiS WG ERRE AL B IR AL
FEAS ik 15 14
ARSIk 15 6

T B UEAR S B T RACR S 4
eI = NS W Ol E A/ 1Y L - b =Sy L ES W0
WEE AT SR 43 B 5 ik, 3 R SQP LA 531 % g
— A EETCR AR AR, U R TR T 0 2 SRl
JEE R LB BT 2 T R T e L R AE N

HAh 7192 % . fdiH SQP 47 fE ol (A T 531t 3

B L I RE R BUL IR BEDLA W, ST e Ros
DA 8 FH D) fE bR AR B . AR TSR B DL
JERE, R T IMCS #EA TR  FEAR L 1 x 10°, 41
A5 T FH Dy B R BB ¢ x 10°. FEAR J75 FI AR SC
J5 A8 1] Kriging #5584 D) Rl R AL, PR 2 BB PR AL
1) 18 FH BN #  Kriging 46 8L{efi FH A REAS B8, ] LA
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A5 BIREAS s AR SO v 1 B 68 pR B0 K 73531
29 FN 21, Jd 3 X F AR S5 v X T RE eR B A
PR D RSO EA BT RRCE.

Fe 4 Rk AEA AT AR ST 1 Tl AR
Oy B 4% R K AR R 25 L DAL BB Y Bel(G) A
0.891 8,PI(G) 1 0.997 83, LI H N S 2% FEAS k11
) Bel(G) 4 0.892 3, #HXT 1 22 294 0.056% , P1(G )
90.998 1, AHXS 152 22 24 0.03%. A< 3C 7 ik 1A
Bel(G) 2 0.891 85, A% % 2 29 24 0.006% , P1(G) H
0.997 83, X522 K 0. I WA Sy v A3 5 e T T
KB . 38 23X AN S AT LA AR SCOT R AT DL T
TR HE R 3 1)

F4 UEUESTERBEMAMTIEE

Tab.4 Reliability analysis results and their relative errors

- AR AR 22 1%
Bel(G) PI(G) Bel(G) PI(G)
Pt 0.891 80 0.997 83 — —
A ik 0.892 30 0.998 10 0.056 0.03
AR5 0.891 85 0.997 83 0.006 0
42 HIEHEBIZ

DL 13 Al 57 UE 3 A5 £ 10 41 S 45 48 1) m S
3 A TR A 46140, 36 IR AR SC 5 3k A e 2 v A et )
R M . S RS A A T BT

R BN E,  IE R 9 A SN B
KEEN L. 3 T2 AR AR, HoAy IO & o B, ,
RN C R BER D, A EE N —FE | A MZ R R
I 2 AE R ST . AR AT A1 PP,
Py P PsFIPg, 53 RN B2 Ly Ly Ly Ly L Lo o7
BT I 3 B TR L VRN R S Rz
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Fig.7 Diagram of composite beam structure

() $5e K 7t IRAE v (Rl A T M-M b, o T AR IR
G R, RERZ R KN o, WANT
TR B RV N 7 S, 4l A B 20 1 D fig eR 4k
wmr.
G(X,Y)=S-o0,, (22)
Horp G RS2 s R AT
a, A

a,t a,

[

max

& Pi(L_Li)
al:Z‘TLS_PI(L2_L1)_P2(L3_L2)

_ s _ 2y LBl
a, = B AB*+ AB(A - 0.5B)* + 2B, CcD

a; ~ L eposp+B-ay
EW

E
0.5AB" + = CD(B+D)

A= x
AB+Eecp
E

W

(23)

20 G TR 55 W 7K 52 1 3T A8 R ) BPA 25 44 4n

5 6 Frow , BRI MRLR BE 1) BPA 4544 4n 3k 7 iy

7, R T R AR R 1 BPA S5 M % 8 IR, LA K
FR MR AR IR S ) BPA 254 1052 9 s .

x5 HELEP, P, P,HIBPA
Tab.5 Basic probability assignment of P, P,, P,

fEI0 P YR BPA/KN it P, %R ) BPA/KN fE0 P YR BPA/KN
[10.5,12] 0.1 [10.5,12] 0.1 [10.5,12] 0.1
[12,13.5] 0.2 [12,13.5] 0.2 [12,13.5] 0.2
[13.5,15] 0.3 [13.5,15] 0.3 [13.5,15] 0.3
[15,16.5] 0.2 [15,16.5] 0.2 [15,16.5] 0.2
[16.5,18] 0.15 [16.5,18] 0.15 [16.5,18] 0.15
[18,19.5] 0.05 [18,19.5] 0.05 [18,19.5] 0.05

22 10 BEAR 5535 FUAR SC 5 ¥4 4 Kriging #5750 B
ESEaIR e[ B2y = o N 1 e | B2 = o N i )
IR U 25 175 BN W 1R Kriging A8, FEA 515 5047 58

I Kriging #5844 5O, 3 el 78 HORT A v AR AR
SIEH AR BN E — DN GRAEA , 2 Kriging B8
A ST R O AR S R AT . AR STk BRI BRI R
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Tab.6 Basic probability assignment of P,, P, P,

$EI0 P XF IV ) BPA/KN o P XFV ) BPA/KN T P XS Y BPA/KN
[10.5,12] 0.10 [10.5,12] 0.10 [10.5,12] 0.10
[12,13.5] 0.20 [12,13.5] 0.20 [12,13.5] 0.20
[13.5,15] 0.30 [13.5,15] 0.30 [13.5,15] 0.30
[15,16.5] 0.20 [15,16.5] 0.20 [15,16.5] 0.20
[16.5,18] 0.15 [16.5,18] 0.15 [16.5,18] 0.15
[18,19.5] 0.05 [18,19.5] 0.05 [18,19.5] 0.05

®7 AEREMMEEERBPA

Tab.7 Basic probability assignment of material strength

#IT E XTI ) BPA/GPa £IT E XTI BPA/GPa T SXF I BPA/MPa
[49,56] 0.022 8 [6.125,7] 0.10 [17.15,19.6] 0.10
[56,63] 0.1359 [7,7.875] 0.20 [19.6,22.05] 0.15
[63,70] 0.3413 [7.875,8.75] 0.30 [22.05,24.5] 0.35
[70,77] 0.3413 (8.75,9.625] 0.20 [24.5,26.95] 0.20
[77,84] 0.1359 [9.625,10.5] 0.15 [26.95,29.45] 0.15
[84,91] 0.022 8 [10.5,11.375] 0.05 [29.45,31.9] 0.05

*8 RHMERTHIBPA

Tab.8 Basic probability assignment of beam cross—section

F10 I3 Kriging B R8I ZREEA AN I I SR A AR 3

Tab.10 Initial training sample size and additional training

dimensions sample size for constructing Kriging models 4"
- T A X R FY fire AL R I IAG] ViR S WIR I ZRREAR %L B ZRRE AR SL
L BPA/mm BPA/mm FEAR 75 105 —
[99.7,99.8] 0.05 [199.7,199.8] 0.10 ARSI 105 83
[99.8,99.9] 0.15 [199.8,199.9] 0.20
[99.9,100] 0.30 [199.9,200] 0.30 W REA SR R A A A Kriging 7L, BT LA
[100,100.1] 0.30 [200,200.1] 0.20 AR AR AT s R . Pk k3588 Bel(G) N
[100.1,100.2] 0.15 [200.1,200.2] 0.15 0.812 83, PI(G) 7 0.996 11. 7 7 1 1 11 Bel(G)
[100.2,100.3] 0.05 [200.2,200.3] 0.05

*9 SRREERTH BPA
Tab.9 Basic probability assignment of aluminum sheet

cross—section dimensions

fest BRI C X o I D XTI Y
BPA/mm BPA/mm

[79.7,79.8] 0.10 [19.7,19.8] 0.05
[79.8,79.9] 0.20 [19.8,19.9] 0.15
[79.9,80] 0.30 [19.9,20] 0.30
[80,80.1] 0.20 [20,20.1] 0.30
[80.1,80.2] 0.15 [20.1,20.2] 0.15
[80.2,80.3] 0.05 [20.2,20.3] 0.05

AEL N 105, Wi I GRrEA Bl 83, — i J1] 188 4

VIIZRREAR IO FH 39 R 56 K 188 2. 6 E 5
i | 7% S5 o A R A Kriging B0 ELAT
B R

11 Rtk AR 2 R SOy kB

H0.817 20, FHAF1R 22254 0.538%,P1(G) 4 0.996 11,
AHXT IR 220 0, ] WA SC 7 345 38 5 W T ARG
T2 e WA Sy vl DA T i 4 n] S5 B [n)
T K it

F11 TEESFERREETRE

Tab.11 Reliability analysis results and their relative errors

pr—— A AERT 1522 /%
Bel(G) PI(G) Bel(G) PI(G)
AR 0.812 83 0.996 11 — —
FEAR RE — — — —
AT 0.817 20 0.996 11 0.538 0

4.3 ZiRIEEADIE AT S 1E S

B AR5 PN P 80 4 0 L T A F3 1) T S0 A
() R AR 52 PR AR ) R TR AR . 7R
gl p AR BE R R VR4 T T AR 3 A
JIr AW 35 I TRl AR 9 22 A PR 23 0 DR A AR A= i



% 6 3

SRAT AR — I TESE BR3¢ ) AT SEVE S BT T 131
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gty B JEERE A ¢, BT EE D JEEBE Oy oy, iR AR 1)
JEEBE R o, MM RLRR B E RV B R p, AR AE
S UIE i AR ST L PR 2 (] SRR B ST Y B R SR
GER RS ks B2 % BE 1Y £ 5T S BPA TR 12 11
F 3PN . 5 RN B 2, HE ST T T BE PR R
e

g, =y — alt, lyts, by Eyp) (24)
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Fig.8 Diagram of frontal vehicle collision

a(tla t27 t}? t47 E’p):
346.886 2—5.091 31,+3.562 71,-6.957 81, +
4.075 8t,-0.222E+0.852 1p-10.720 3¢,¢,+

6.307 4¢,t,—0.874 2¢,t,+5.153¢, E+0.593 4¢, p+
4.388 2t,t,+4.055 61,1,—5.174 5t, E+9.576 3t,p+
7.606 3t,t,+3.273 6t,E-3.576 6t,p—1.137 9t, £+
12.953 9t,p—5.487 6Ep+8.725 817+6.445 213 -
7.041 713+10.190 1£3+16.009 1E*-4.055 7p°

altyy by byt Ep): (25)
F12 BERR~THIBPA
Tab.12 Basic probability assignment of bumper beam dimensions
faot 1, %13 £ BPA/mm fEo £, % B ) BPA/mm faot 1, %] 13 £ BPA/mm
[1.10,1.15] 0.202 [16,1.7] 0.061 [1.6,1.7] 0.061
[1.15,1.20] 0.486 [1.7,1.8] 0.072 [1.7,1.8] 0.072
[1.20,1.25] 0.100 [18,1.9] 0.367 [1.8,1.9] 0.367
[1.25,1.30] 0.080 [1.9,2.0] 0.367 [1.9,2.0] 0.367
[1.30,1.35] 0.070 [2.0,2.1] 0.072 [2.0,2.1] 0.072
[1.35,1.40] 0.070 [2.1,22] 0.061 [2.1,22] 0.061

R13 BERRTREMEIEEEER BPA

Tab.13 Basic probability assignment of bumper beam dimensions . material strength and density

fEot £, %7 /4 BPA/mm fEo0 E XTI ) BPA/(x10° MPa) JSH p XA BPA/(X10° kg mm™)
[1.85,2.0] 0.034 [1.85,1.90] 0.10 [7.47,7.56] 0.1
[2.0,2.15] 0.291 [1.90,1.95] 0.15 [7.56,7.65] 0.1
[2.15,2.25] 0.350 [1.95,2.00] 0.35 [7.65,7.85] 0.3
[2.25,2.40] 0.291 [2.00,2.05] 0.15 [7.85,8.05] 0.3
[2.40,2.50] 0.017 [2.05,2.10] 0.15 [8.05,8.15] 0.1
[2.50,2.55] 0.017 [2.10,2.15] 0.10 [815,8.25] 0.1

e 14 AAEAR ST FUA SC T 75 4 2 Kriging #5575
B 9 0 G I A A B5ORI 7 8 I R A AR AR R 1Y
WA VI GRFEARTT | FE AR 55005 0 87 35 U1 25 e AR 0
153, —H&fl FH 181 I ZRbEAS, RIVE T ki % 181
W3 A SO B S I GRee A B0k 30, — L fifi Y 58 4
YIZRREAS, B FH D) B pR A 58 Y, v WL AR SC 7 i 41
FeFREA S AT B RCR A — 2 B4R T

P15 AR FEA TR AR SO AR T
AR AR B8 Bel(G) 24 0.922 29, PI(G)
410.996 78. FEAS S L THEAT Y Bel (6G) 2 0.961 11,
AHXT IR 22 25 4.209%, PL(G) }y 0.961 11, A X% 2%

F 14 HE Kriging B2 B #1341l SR A A
B SR AR
Tab.14 Initial training sample size and additional training

N

sample size for constructing Kriging models |

HEF% WG N ERRE AL el a | N E N
FEAR STk 28 153
ATk 28 30

2974 3.579% , AR IR 228K TS5 SRR3R SC7
it B A5 2 K Bel(G) 0961 27, #H %15 22 45 Ky
0.067%, P1(G) >4 0.996 81, #HX 15 2 2 4 0.003%, 1]
DA STy A 38 e W T EORG FE . AR SO Wkt 240 1
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Tab.15 Reliability analysis results and their relative errors

- AR AR 2%
Bel(G) PI(G) Bel(G) PI(G)
Pt 0.922 29 0.996 78 — —
A Rk 0.961 11 0.961 11 4.209 3.579
AR5 0.921 67 0.996 81 0.067 0.003
5 &it
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