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Quadrilateral Element Based on True Rotation Angle and “Trial—correction”

Interpolation
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Abstract: To address the problem of incompatibility between different elements, the paper introduces a “trial-
correction” displacement interpolation scheme. This scheme is utilized to construct a four-node quadrilateral plane
element that incorporates a drilling degree of freedom. The “trial-correction” interpolation—based four—node
quadrilateral plane element takes translational displacements and the drilling degree of freedom as nodal
parameters, and higher—order interpolation functions are employed to approximate the displacement field. Firstly,
bi-linear interpolation is used to trail the displacement fields. And then, according to the deviation of the drilling
degree of freedom, the displacement fields are corrected with bi—cubic interpolation. The convergence of the “trial-
correction” interpolation—based four—node quadrilateral plane element is proved by the patch test, and its

performance is further verified by three examples. The numerical results show that the “trial-correction”
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interpolation—based four—-node quadrilateral plane element has a high convergence rate, a high numerical accuracy,

and can be compatible with beam elements for convenient mix—element modeling. Moreover, the “trial-correction”

interpolation method is parameterized and has good extendibility, which lays a foundation for future research about

other elements with true rotation angle.

Key words: finite element method ; interpolation ; convergence of numerical methods; quadrilateral plane ele-

ment ; true rotation angle
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Tab.5 Result of Cook under plan stress condition
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Fig.8 Convergence curve of the maximum principal stress
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