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基于真实转角与“试探-修正”插值的四边形单元

黄观新 1，卢永和 1，李航行 1，杨志军 1，2†，陈新 1
（1. 广东工业大学 省部共建精密电子制造技术与装备国家重点实验室，广东 广州 510006；

2. 佛山市华道超精科技有限公司， 广东 佛山 528225）

摘 要：为解决不同单元间的兼容性问题，提出一种“试探-修正”位移插值方法，用于构造

具有旋转自由度的四节点四边形平面单元 . 基于“试探-修正”插值的四节点四边形平面单元

以平动位移和转动角度作为节点参数，采用双线性插值对位移场进行试探，根据转角的偏差，

采用双三次插值对位移场进行校正 .通过分片测试证明了该方法构造的四节点四边形平面单

元的收敛性，并用三个算例进一步验证了其性能 . 数值结果表明，基于“试探-修正”插值的四

节点四边形平面单元不仅收敛速度快，数值精度高，还能与梁单元兼容，方便混合单元建模 .
此外，“试探-修正”插值方法可参数化，具有良好的可扩展性，为今后研究其他具有真实转角

的单元奠定了基础 .
关键词：有限元法；插值；数值算法收敛性；四边形平面单元；真实转角
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Quadrilateral Element Based on True Rotation Angle and “Trial-correction” 
Interpolation
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Abstract：To address the problem of incompatibility between different elements， the paper introduces a “trial-
correction” displacement interpolation scheme. This scheme is utilized to construct a four-node quadrilateral plane 
element that incorporates a drilling degree of freedom. The “trial-correction” interpolation-based four-node 
quadrilateral plane element takes translational displacements and the drilling degree of freedom as nodal 
parameters， and higher-order interpolation functions are employed to approximate the displacement field. Firstly， 
bi-linear interpolation is used to trail the displacement fields. And then， according to the deviation of the drilling 
degree of freedom， the displacement fields are corrected with bi-cubic interpolation. The convergence of the “trial-
correction” interpolation-based four-node quadrilateral plane element is proved by the patch test， and its 
performance is further verified by three examples. The numerical results show that the “trial-correction” 
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interpolation-based four-node quadrilateral plane element has a high convergence rate， a high numerical accuracy， 
and can be compatible with beam elements for convenient mix-element modeling. Moreover， the “trial-correction” 
interpolation method is parameterized and has good extendibility， which lays a foundation for future research about 
other elements with true rotation angle.
  Key words：finite element method；interpolation；convergence of numerical methods；quadrilateral plane ele⁃
ment；true rotation angle

随着计算机技术的发展，有限元法已被广泛应

用于解决各种科学和工程问题［1］.对于同时具有不同

结构的复杂机构，在运用有限元法进行分析的过程

中，可能会遇到奇异刚度矩阵的问题，这会导致分析

无法成功［2-3］.而带有旋转自由度的平面单元可以通

过与板单元结合来构造壳体单元，从而使壳体单元

避免奇异刚度矩阵问题 . 不过必须指出的是， 开发

高性能的低阶带有旋转自由度的平面单元仍然是研

究人员面临的挑战 .
Allman［4］提出对节点使用二次插值构造出带真

实转角的三角形平面单元 .在此基础之上， Cook［5］证
明了通过线性应变三角形单元和角节点旋转的三角

形单元之间的转换技术可以得到 Allman 等效元，并

在此基础上提出了一种带转动自由度的四边形单

元 .近十年间，带转角的平面单元有了多方面的完善

与扩充，其中 Shang等［6］提出了一种带有真实旋转自

由度的非对称膜单元， 包括开发了具有真实转动自

由度的非对称三角形单元［7］和非对称四边形单元［8］. 
Rezaiee-Pajand 等［9］使用泰勒级数的方法对应变场

进行插值， 提出了基于应变的三角形膜单元 . Bouta⁃
gouga［10］提出了一种具有真钻井旋转自由度的基于

位移的膜单元公式 . 面内转角在杂交有限元、混合有

限元中也扮演重要角色， 例如Daszkiewicz等［11］基于

Hu-Washizu原理， 提出了含钻井旋转的混合四节点

壳单元， 并将该单元用于非线性分析 .Wang［12］提出

了一种具有真实转动自由度的平面单元 .文颖等［13］

构建了一种含有面内自由度的四节点板壳单元，用

于非线性分析中 . Sangtarash等［14］利用Airy应力函数

的解析解以及四节点单元的等参位移构造了一个高

性能且带有旋转自由度的非对称四边形单元 .基于

修正偶应力理论，Wu等［15］采用罚函数法约束引入的

旋转量并构造了一个八节点四边形单元，而 Long
等［16］通过引入薄板弯曲的假设，修改偶应力弹性的

三维控制方程构造了类似于非线性有限元模型性能

的 Trefftz 板单元 . 文献［17］对平面单元的发展做了

比较详细的归纳 .
与传统等参单元相比，这些包含真实转角的单

元表现出更好的性能 . 然而，这些单元在应力/应变

贴片测试中未能严格满足要求，其收敛性和数值稳

定性有待进一步探讨 .此外，带转动自由度的单元在

公式推导方面过于复杂，不利于在工程实际中应用 .
本文将平动位移和转动位移作为节点参数，提

出了一种“试探-校正”插值方法，用于构建参数化位

移插值 . 基于“试探-校正”插值方法，推导了一个具

有真实旋转自由度的四节点四边形平面单元（four-
node-quadrilateral plane element with trial-correction 
interpolation，plane-Q4-TC 单元）. plane-Q4-TC 单元

具有三次位移场， 展现出较高的数值精度和较快的

收敛速度， 可以与平面梁单元兼容， 便于进行混合

单元建模 . 同时， 参数化的“试探-校正”插值方案具

有良好的扩展性， 可用于构建梁、壳和实体等多种

单元， 从而形成一个多维度兼容的有限元系统 .
本文内容安排如下：第 1章为 plane-Q4-TC单元

的“试探-校正”插值方案的理论公式推导，并通过分

片测试证明所构建单元的收敛性 . 第 2 章用数值算

例来验证plane-Q4-TC单元的性能 .第3章为结论 .

1   理论公式

1.1   节点参数

假设一个无限小平面单元的真实转动如图 1所

示， 图 1（a）和图 1（b）分别指刚性单元的真实转角以

及可变形单元的真实转角， 刚性单元的真实转角 θu

和 θv相同， 因此可用转角 θ̄表示：

θ̄ = θu = - ∂u
∂y

= θv = ∂v
∂x

（1）
可变形单元的真实转角 θu 和 θv 不相同， 因此真

实转角 θz可定义为：
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θz = 1
2 (θu + θv ) = 1

2 ( ∂v
∂x

- ∂u
∂y ) （2）

包含真实转角的四节点四边形平面单元模型如

图 2 所示，图 2（a）和图 2（b）分别指物理坐标系和自

然坐标系下的平面单元 . 每个单元节点 pi ( i = 1~4)
都包含 3个参数，分别是平动位移 u、v以及绕 z轴旋

转的真实转角 θz，位移场 u ( ξ，η ) 和 v ( ξ，η ) 均由以上

3个节点参数插值得到 .其中， ( ξ，η ) 为自然坐标， 与
物理坐标之间的变换关系为：

x ( ξ，η ) = N ( ξ，η )xe
y ( ξ，η ) = N ( ξ，η )ye

（3）
式中： xe 和 ye 分别是 x 和 y 方向节点坐标矢量； 
N ( ξ，η ) 是形函数矩阵， 可表达为：

N ( ξ，η ) = [ ]n1 n2 n3 n4

n1 = 1
4 ( )1 - ξ (1 - η )

n2 = 1
4 ( )1 + ξ (1 - η )

n3 = 1
4 ( )1 + ξ (1 + η )

n4 = 1
4 ( )1 - ξ (1 + η )

（4）

1.2   位移插值

本节采用“试探-修正”法构造位移场， 假设位

移场 u ( ξ，η ) 和 v ( ξ，η ) 均由试探项位移 ut ( ξ，η )、
vt ( ξ，η ) 和修正项位移 uc ( ξ，η )、vc ( ξ，η ) 组成， 表达

式为：

u ( ξ，η ) = ut ( ξ，η ) + uc ( ξ，η )
v ( ξ，η ) = vt ( ξ，η ) + vc ( ξ，η ) （5）

式中：试探项位移场 ut ( ξ，η )、vt ( ξ，η ) 由双线性插值

得到， 表达式为：

ut ( ξ，η ) = N ( ξ，η )ue = N t
u ( ξ，η )de

vt ( ξ，η ) = N ( ξ，η ) ve = N t
v ( ξ，η )de

（6）
式中： ue 和 ve 分别是沿着 x 轴和 y 轴的节点位移；de
指节点参数的位移向量， 表达式为：

de = [ ]d T1 d T2 d T3 d T4
T

d i = [ ]ui vi θz，i

（7）
形函数N t

u ( ξ，η ) 和N t
v ( ξ，η ) 的表达式为：

N t
u ( ξ，η ) =

[ ]N t
u，1 ( ξ，η ) N t

u，2 ( ξ，η ) N t
v，3 ( ξ，η ) N t

u，4 ( ξ，η )
N t

u，i = [ ]ni 0 0
（8）

（a）物理坐标系

（b）自然坐标系

图2   包含真实转角的四节点四边形平面单元

Fig.2   A four-node quadrilateral plane element with true
rotation angle

（a）刚性单元真实转角

（b）可变形单元真实转角

图1   真实转角的定义

Fig.1   Definition of true rotation angle

136



第 6 期 黄观新等：基于真实转角与“试探-修正”插值的四边形单元

N t
v ( ξ，η ) =

[ ]N t
v，1 ( ξ，η ) N t

v，2 ( ξ，η ) N t
v，3 ( ξ，η ) N t

v，4 ( ξ，η )
N t

v，i = [ ]0 ni 0
（9）

由式（2）得知， 试探项构造的真实旋转角可以

计算为：

θ t
z ( ξ，η ) = 1

2 ( ∂vt

∂x
- ∂ut

∂y ) = B t
z ( ξ，η )de （10）

式中： B t
z ( ξ，η ) 的表达式可以写成：

B t
z ( ξ，η ) = [ ]B t

z，1 B t
z，2 B t

z，3 B t
z，4

B t
z，i = é

ë
êêêê

ù

û
úúúú- 1

2
∂ni∂y

1
2

∂ni∂x
0 （11）

结合式（3）， 将式（11）的偏导数写成：

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
∂ni∂x
∂ni∂y

= J-1 ( ξ，η )
é

ë

ê

ê

ê
êê
ê
ê

ê

ê

ê ù

û

ú

ú

ú
úú
ú
ú

ú

ú

ú∂ni∂ξ
∂ni∂η

（12）

式中：J ( ξ，η ) 是雅可比矩阵， 表达式为：

J ( ξ，η ) =
é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú∂N ( ξ，η )
∂ξ

∂N ( ξ，η )
∂η

[ xe ye ] （13）

对于平面单元， 节点 pi ( i = 1~4) 可以满足以下

表达式：

ì

í

î

ïïïï

ïïïï

u t
i = ut ( ξ，η ) = ui

v t
i = vt ( ξ，η ) = vi

θ t
i = θ t

i ( ξ，η ) = B t
z ( ξi，ηi )de

（14）

式中：ξi 和 ηi 是节点 pi 的自然坐标 .修正项 uc ( ξ，η )、
vc ( ξ，η ) 和 .θc

z ( ξ，η ) 需要满足以下情况：

ì

í

î

ïïïï

ïïïï

uc
i = ui - u t

i = 0
vc

i = vi - v t
i = 0

θc
z，i = θz，i - θ t

z，i = Bc
z，ide

（15）

式中：

Bc
z，i = [ ]Bc

z，1 Bc
z，2 Bc

z，3 Bc
z，4

Bc
z，j ( ξi，ηi ) = é

ë
êêêê

ù

û
úúúú

1
2

∂nj∂y
- 1

2
∂nj∂x

nj ( ξi，ηi ) （16）

通过三次插值的方法构造修正项位移， uc ( ξ，η )
和 vc ( ξ，η ) 可表达为：

uc ( ξ，η ) = P ( ξ，η )α
vc ( ξ，η ) = P ( ξ，η ) β （17）

式中：P ( ξ，η ) 是由 12 个插值基函数组成的行向量， 
如表1所示；α和β是待定系数， 可表达为：

α = [ ]α1 α2 ⋯ α12
T

β = [ ]β1 β2 ⋯ β12
T （18）

为了求解待定系数， 在节点 pi处建立以下方程：

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úP ( ξi，ηi )
Pξ ( ξi，ηi )
Pη ( ξi，ηi )

α =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úuc ( ξi，ηi )
uc

ξ ( ξi，ηi )
uc

η ( ξi，ηi )
=

é

ë
êêêê

ù

û
úúúú

1 0
0 J ( ξi，ηi )

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú
uc

i

uc
x ( ξi，ηi )

uc
y ( ξi，ηi )

（19）

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úP ( ξi，ηi )
Pξ ( ξi，ηi )
Pη ( ξi，ηi )

β =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úvc ( ξi，ηi )
vc

ξ ( ξi，ηi )
vc

η ( ξi，ηi )
=

é

ë
êêêê

ù

û
úúúú

1 0
0 J ( ξi，ηi )

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú
vc

i

vc
x ( ξi，ηi )

vc
y ( ξi，ηi )

（20）

式中：下标 ξ、η、x和 y表示对应的偏导数 . 假设修正

项 uc ( ξ，η ) 和 vc ( ξ，η ) 呈现刚性节点特征， 即修正项

在节点处不引起应变， 表达为：

ì
í
î

uc
x ( ξi，ηi ) = vc

y ( ξi，ηi ) = 0
-uc

y ( ξi，ηi ) = vc
x ( ξi，ηi ) = θc

z，i

（21）
将式（21）代入式（15）可得到：

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú
uc

i

uc
x ( ξi，ηi )

uc
y ( ξi，ηi )

= Su
i de，

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú
vc

i

vc
x ( ξi，ηi )

vc
y ( ξi，ηi )

= Sv
ide （22）

式中：Su
i 和Sv

i 分别为：

Su
i = é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú0
0

-Bc
i

，Sv
i = é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú0
Bc

i0
（23）

将式（22）代入式（19）和式（20）， 得到：

ì
í
î

A iα = J e
i Su

i de
A i β = J e

i Sv
ide

（24）
其中，

表1   四结点四边形单元修正项的基函数

Tab. 1   Basis functions of correction terms for four-node 
quadrilateral element

ξ项

1
ξ

ξ2

ξ3

η项

1
1
ξ

ξ2

ξ3

η

η

ξη

ξ2 η

ξ3 η

η2

η2

ξη2

—

—

η3

η3

ξη3

—

—
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A i =
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úP ( ξi，ηi )
Pξ ( ξi，ηi )
Pη ( ξi，ηi )

，J e
i = é

ë
êêêê

ù

û
úúúú

1 0
0 J ( ξi，ηi ) （25）

将式（24）写成联立方程的形式， 可表达为：

ì
í
î

Aα = JeSude
Aβ = JeSvde

（26）
其中，

A =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úA1
A2
A3
A4

，Je =
é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úJ e1 0 0 0
0 J e2 0 0
0 0 J e3 0
0 0 0 J e4

（27）

Su =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úSu1
Su2
Su3
Su4

，Sv =
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úSv1
Sv2
Sv3
Sv4

（28）

求解方程（26）， 求出待定系数：

ì
í
î

α = A-1JeSude
β = A-1JeSvde

（29）
将式（29）代入方程（17），得到：

uc ( ξ，η ) = P ( ξ，η )A-1JeSude 
vc ( ξ，η ) = P ( ξ，η )A-1JeSvde （30）
因此面内位移的形函数为：

N c
u = P ( ξ，η )A-1JeSu

N c
v = P ( ξ，η )A-1JeSv

（31）
将式（6）、式（30）、式（31）代入式（5）可得到：

u ( ξ，η ) = ( )N t
u ( ξ，η ) + N c

u ( ξ，η ) de 
v ( ξ，η ) = ( )N t

v ( ξ，η ) + N c
v ( ξ，η ) de （32）

1.3   单元刚度矩阵

根据式（32）， 膜应变可计算为：

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úεx

εy

γxy

=

é

ë

ê

ê

ê

ê

ê

ê
êêê
ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú
úúú
ú

ú

ú

ú

ú
∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

= (B tm + Bcm ) de （33）

式中：εx 和 εy 代指膜单元的正应变；γxy 代指剪应变；

B tm 和 Bcm 分别对应试探项和修正项的应变矩阵， 可
定义为：

Bkm =
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，(k = t，c) （34）

其中，关于 x和 y的偏导数可以计算为：
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A-1JeS l，( l = u，v ) （35）

令：

Bsm = B tm + Bcm （36）
式中：Bsm 指膜单元的应变矩阵，膜刚度矩阵可表

达为：

kem = h ∫
Ω
BTmCBm dxdy =

          h ∫-1

1 ∫-1

1
BTmCBmJ ( ξ，η )dξdη

（37）

式中：h 和 Ω 分别为单元的厚度和积分域；C为本构

矩阵 . 对于平面应力问题和平面应变问题， C可分别

表示为：

C = E
1 - ν2
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2
（38）

或者

C = E (1 - ν )
(1 + ν ) (1 - 2ν )
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（39）
式中：E为弹性模量；ν为泊松比 .
1.4   分片试验

位移场的设置如表 2 所示， 分别产生恒定应变

εx，εy 和 γ. 以 εx 为例， 将节点坐标 pi 代入位移函数， 
可得到节点位移：

di = é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úui

vi

θi

= é

ë

ê

ê
êê
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ê ù

û
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ú
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úa0 + a1 xi0
0

（40）
由式（40）可得：

表2   常应变位移场

Tab. 2   Displacement fields for constant strains

位移

u ( x，y )
v ( x，y )

εx

a0 + a1 x

0

εy

0
b0 + b1 y

γ

a0 + a1 y

b0 + b1 x
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Sude = 0
Svde = 0 （41）
因此可推导出位移场：

u ( ξ，η ) = ut ( ξ，η )
v ( ξ，η ) = vt ( ξ，η ) （42）
即在应变 εx 为常数的情况下， plane-Q4-TC 单

元等价于经典等参元， 在 εx 或 εy 为常数的情况下也

可得到类似结论 . 因此， plane-Q4-TC单元能够通过

分片试验 .

2   数值算例

本章主要通过 4 个不同的算例：悬臂梁、Mac⁃
Neal 梁、Cook 问题以及 plane-Q4-TC 单元在工程应

用中的可行性分析， 来验证“试探-修正”法构造

plane-Q4-TC单元的精度以及收敛性 .
2.1   悬臂梁

悬臂梁的长宽比为 10， 梁的左端受到固定约

束， 在右端 A 点处施加垂直向下的拉力 Fy， 具体的

受力情况以及结构参数如图 3 所示 . 该悬臂梁使用

不同的有限单元网格（网格尺寸 le =1， 2.5， 5， 10， 
20， 25， 50， 100 mm）进行离散化， 在A点处沿 y方向

的位移结果如表3所示 .

作为比较， 本节使用等参元和 ABAQUS S4R 单

元对悬臂梁案例进行静力学分析， 分析结果如表 3
所示， 以此来验证本研究构建的单元收敛性 . 3种单

元的位移结果如图 4所示 . 此外， 将ABAQUS的高阶

四边形单元作为参考解绘制在图 4中来直观体现各

种单元的收敛趋势 .
由图 4可知，在相同的单元网格划分条件下， 使

用“试探-修正”法构造的 plane-Q4-TC 单元的数值

结果与参考值更加接近，比等参元和 ABAQUS S4R
的收敛速度更快 . 此外，从表 3 的数值结果可以得

知，plane-Q4-TC单元使用 10 mm网格离散时的计算

结果优于其他两种单元使用 2.5 mm 网格划分的结

果 .plane-Q4-TC 单元使用 2.5 mm 网格离散时求解

的位移值与另外两种单元使用 1 mm 网格划分得到

的位移值基本相等 .

综合上述分析，使用“试探-修正”位移插值法构

造的 plane-Q4-TC 单元具有很高的数值精度，在相

同的单元尺寸下，该单元更加接近参考值，而且比等

参元和ABAQUS S4R单元具有更快的收敛速度 .
2.2   MacNeal梁

图 5 所示为 MacNeal 提出的细长悬臂梁模型， 
其通常用来检验单元剪切自锁现象以及非常规网格

对计算精度的影响，本次算例应用了两种梯形网格

［图 5（a）和图 5（b）］来做本次测试 . 悬臂梁长度 L=    
6 mm，高度 h=0.2 mm，厚度 t=0.1 mm，杨氏模量 E=
107 MPa， 泊松比 ν=0.3.在载荷M作用下右端挠度的

参考值为-0.005 4 mm；在载荷 P 作用下右端挠度的

参考值为 0.108 1 mm［6］.将计算结果归一化并记录在

表4中 .
根据表 4 可以看出等参元的精度在处理 Mac⁃

Neal梁时出现剪切自锁现象，主要表现为精度欠佳， 

图3   悬臂梁算例

Fig.3   Example of cantilever beams

表3   A点沿 y轴的位移

Tab.3   Displacements data of point A along y-axis
mm 

单元网格尺寸

1
2.5
5

10
20
25
50

100

ABAQUS S4R
0.550
0.536
0.490
0.370
0.211
0.211
0.053
0.014

等参元

0.549
0.534
0.489
0.369
0.210
0.159
0.055
0.014

plane-Q4-TC
0.552
0.550
0.547
0.541
0.407
0.344
0.153
0.049

图4   3种不同单元中A点 y方向位移对比

Fig.4   Comparison of the displacements along y-axis of point A 
in three different models
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在不同测试环境下最优精度仅为 3.1%.为解决该问

题，众多学者在理论上进行了不断完善， Shang等［6］提

出的US-Q4θ单元在该问题上甚至无限趋于解析解 .
尽管本文所提出的 plane-Q4-TC单元在精度上

不及 US-Q4θ单元、HS-A7单元等，但其精度依然超

过了86%.

2.3   Cook问题

为了验证 plane-Q4-TC 单元的性能， 本节对

Cook问题进行求解， 即求解非规则几何形状的悬臂

梁在端部受剪问题 . Cook悬臂梁示意图如图 6所示， 
梁的左端被固定， 而右端则受到面内剪力的作用 . 
通过 3 项指标对 plane-Q4-TC 单元的性能进行了评

估：C点挠度的绝对值（vC）、A点的最大主应力（σA max）

以及 B点的最小主应力（σB min）.随后，将所得结果与

其他学者的研究成果［19-20］进行了对比分析，相关数

据如表 5 所示 . 因为 plane-Q4-TC 单元的应力和应

变是不连续的， 所以表 5中平面单元的每种情况均

有 3个应变和应力结果：S1 指左侧单元的结果， S2 指

右侧单元的结果，Sm 指平均值 .为了直观地比较不同

方法的收敛性， 分别绘制了相应指标的收敛曲线，

分别在图7~图9中展示 .

表5   平面应力条件下的Cook问题计算结果

Tab.5   Result of Cook under plan stress condition

网格规模

2×2

4×4

8×8

16×16

单元种类

Allman［4］

Q4S［21］

GQ12M8［16］

Pimpinelli［22］

Zhang et al［19］

Choi et al［23］

plane-Q4-TC （S1）
plane-Q4-TC （S2）
plane-Q4-TC （Sm）

Allman［4］

Q4S［21］

GQ12M8［16］

Pimpinelli［22］

Zhang et al［19］

Choi et al［23］

plane-Q4-TC （S1）
plane-Q4-TC （S2）
plane-Q4-TC （Sm）

Allman［4］

Q4S［21］

GQ12M8［16］

Pimpinelli［22］

Zhang et al［19］

Choi et al［23］

plane-Q4-TC （S1）
plane-Q4-TC （S2）
plane-Q4-TC （Sm）

Q4S［21］

Choi et al［23］

plane-Q4-TC （S1）
plane-Q4-TC （S2）
plane-Q4-TC （Sm）
Reference solution

vC

20.27
21.27
22.49
21.02
22.76
22.52
21.99
21.99
21.99
22.78
23.06
23.44
23.01
23.21
23.44
23.03
23.03
23.03
23.56
23.66
23.78
23.68
23.89
23.79
23.72
23.72
23.72
23.86
23.90
23.88
23.88
23.88
23.96

σA max
0.182 5
0.160 0
0.208 3

—

0.214 5
0.172 1
0.297 5
0.162 9
0.230 2
0.226 1
0.235 5
0.233 8

—

0.223 8
0.218 1
0.269 1
0.222 1
0.245 6
0.234 0
0.237 9
0.236 1

—

0.235 2
0.230 3
0.254 9
0.233 4
0.244 1
0.238 3
0.234 7
0.245 6
0.236 2
0.240 9
0.236 2

σB min
-0.171 6
-0.230 7
-0.221 6

—

-0.193 4
-0.230 6
-0.198 7
-0.901 3
-0.550 0
-0.192 1
-0.151 6
-0.204 5

—

-0.199 4
-0.187 9
-0.209 5
-0.212 5
-0.211 1
-0.200 4
-0.180 3
-0.202 8

—

-0.200 8
-0.192 9
-0.206 2
-0.214 5
-0.210 4
-0.199 0
-0.198 2
-0.205 2
-0.207 9
-0.206 6
-0.202 3

图6   Cook悬臂梁

Fig.6   Cook’s cantilever beam

表4   MacNeal梁在不同载荷作用下右端挠度与参考值的比值

Tab.4   The ratio of deflection to the reference value at the 
right end of the MacNeal beam under different loads

单元类型

plane-Q4-TC

等参元

Allman［4］

HS-A7［18］

US-Q4θ［6］

梯形网格类型

网格一

网格二

网格一

网格二

网格一

网格二

网格一

网格二

网格一

网格二

载荷P下的比值

0.915
0.860
0.031
0.026
0.873
0.805
0.985
0.988
0.993
0.989

载荷M下的比值

0.970
0.919
0.028
0.021
—

—

0.992
0.998
1.000
0.999

（a）梯形网格一

（b）梯形网格二

图5   MacNeal梁
Fig.5   MacNeal beam
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图 7 为 C 点处的位移收敛曲线，可以观察到，

plane-Q4-TC 单元具有良好的精度，比 Allman［4］、

Q4S［21］和 Pimpinelli［22］提出的单元具有更好的性能，

但略逊于GQ12M8［16］、Zhang等［19］和Choi等［23］提出的

单元 .对于 16×16的网格，只有 3个对比数据， plane-
Q4-TC 平面单元的性能比 Q4S［21］好，但不及 Choi
等［23］提出的单元 .

图 8 为 A 点处的最大主应力的收敛曲线， 可以

观察到 S1 的收敛曲线呈自上而下的趋势， 而 S2 的收

敛曲线则与其他学者提出的单元趋势一致， 均为自

下而上收敛 . 此外，S2 的精度高于 S1. 对于较粗的网

格， plane-Q4-TC 单元的性能大致与 Allman 单元和

Q4S 单元相同， 但不如 Zhang 等提出的单元 . 对于

16×16的网格， plane-Q4-TC单元的性能与参考值一

致， 优于Q4S单元和Choi等提出的单元 .
图 9为B点处的最小主应力的收敛曲线，就最小

主应力而言，总体上 S1展现出比 S2更优的性能 .对于

包含 2×2 和 4×4 的网格规模，除了 GQ12M8［16］单元

外， S1 比其他单元更接近参考值 .对于细网格， S1 比

Choi等［23］提出的单元和 Q4S单元［21］收敛性更好， 但
稍逊于Zhang等［19］和Allman［4］提出的单元 .

上述分析结果充分表明， 即使与诸如混合有限

元这些先进的单元理论相比， plane-Q4-TC 单元也

展现出了有竞争力的收敛速度 .
2.4   工程应用

刚柔耦合定位平台物理模型如图 10所示，主要

由 3 部分组成：刚性框架、柔性铰链和工作平台 . 柔

性铰链的两端分别与工作平台和刚性框架连接 .该
平台借助柔性铰链的弹性变形来进行微小运动，从

而补偿摩擦死区实现纳米级定位，能够满足半导体

行业的精密定位需求 .结构设计对于平台的精度具

有显著影响，而力学分析的作用不可或缺 .因此为了

提高刚柔耦合定位平台在结构设计上的准确性以提

升分析的效率，本节以刚柔耦合定位平台为应用对

象，验证平面 plane-Q4-TC 单元在工程应用中的实

用性 .
根据刚柔耦合定位平台的结构特点，提取其主

视图截面作为本节的简单分析模型，其二维简化模

图8   A点的最大主应力的收敛曲线

Fig.8   Convergence curve of the maximum principal stress
at point A

图9   B点的最小主应力的收敛曲线

Fig.9   Convergence curve of the minimum principal stress
at point B

图7   C点处垂直方向的位移收敛情况

Fig.7   Convergence of the normalized vertical displacement 
at point C
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型如图 11所示 .刚性框架的外侧施加固定约束， 工
作台中心施加驱动力Fy.

将刚性框架和工作台使用不同单元尺寸（1，2，
3，5，8 mm）的四边形网格离散，然后采用 plane-Q4-
TC 单元建立有限元模型 . 柔性铰链使用梁单元建

模，plane-Q4-TC单元能够与梁单元直接耦合，无须

额外添加约束 .作为比较，用经典等参元和ABAQUS 
S4R单元代替 plane-Q4-TC单元进行分析 .为了避免

出现兼容性问题，经典等参元和 ABAQUS S4R 单元

需要在连接节点处添加一些梁单元作为额外约束，

具体的添加位置如图11所示 .

为了评估 3 种单元的性能，用其求解平台的载

荷点竖直方向位移，结果如表 6所示 .此外，图 12描

绘了随着网格的细化，3种单元求解的收敛趋势， 以
便更加直观地比较不同单元的性能 .同时，为确保分

析结果的准确性，将整个二维模型（包括柔性铰链）

用 0.5 mm 的四节点四边形网格进行离散，并使用

ABAQUS S4R 单元进行建模，旨在避免平面单元和

梁单元之间的不兼容问题 .然后将分析的结果作为

图12的参考解加以对比验证 .

从图 12 中可以看出，随着网格尺寸的减小， 
plane-Q4-TC 单元可以稳定向参考解趋近 . 与此相

反， 另外两种单元的计算结果对单元尺寸变化的敏

感度较低， 其变化趋势呈现出不规则性，表明含转

角的平面单元具备更好的性能 . 此外， 网格大小为 
1 mm时， plane-Q4-TC单元与参考解之间的误差为

0.54%， 而 ABAQUS S4R 单元和等参元的计算误差

达到 25.08%和 24.57%， 表明 plane-Q4-TC单元具有

更高的计算精度 . 由于 ABAQUS S4R 单元和等参元

需要额外添加梁单元约束才能避免兼容问题， 这种

处理实质上是一种粗糙的近似， 因此这种近似不可

避免地对分析结果造成一定的误差 .

3   结 论

本文基于“试探-修正”位移插值方案推导一种

plane-Q4-TC单元 .通过数值算例表明，该单元具有

较快的收敛速度以及较高的数值精度 .该单元还能

够与平面梁单元直接耦合建模，无需额外的约束条

件来确保兼容性，适用于工程实际 .此外， “试探-修
正”插值法可参数化，且具有良好的可扩展性，可作

表6   工作台的位移

Tab. 6   Displacement of the working stage mm 

单元类型

ABAQUS S4R
等参元

plane-Q4-TC

不同网格尺寸下工作台的位移

8
0.544 2
0.592 0
0.558 8

5
0.568 5
0.607 1
0.563 3

3
0.557 8
0.572 3
0.579 4

2
0.572 6
0.582 9
0.605 8

1
0.571 8
0.575 7
0.759 1

图12   三种单元计算工作台的位移

Fig.12   Displacement of the working stage of three
kinds of elements

图10   刚柔耦合定位平台物理模型

Fig.10   Geometric model of rigid-flexible coupling
positioning stage

图11   刚柔耦合定位平台二维简化模型

Fig.11   Two-dimensional simplified model of rigid-flexible
coupling positioning stage
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为推导包含真实转角的梁单元、壳单元和实体单元

的理论基础，为相关研究提供参考 .
最后，本文单元只涉及位移插值的改进，理论上

边界条件和非线性材料本构模型不影响位移插值的

有效性 .此外，本文单元所使用的真实转角是基于小

变形假设的位移梯度张量定义，因此不适用于处理

几何非线性问题 .今后的工作主要将小变形单元与

多体系统动力学的浮动坐标法结合，也可对材料非

线性和复杂问题边界进行扩展 .
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