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Design of High—speed Low—power Digital Interpolation Filters
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Abstract: In response to the issues of high hardware resource consumption and slow processing speed
associated with traditional digital interpolation filters, a design methodology based on operand resource reuse is
proposed to enhance digital interpolation filter performance. Building upon the foundation of a polyphase digital
interpolation filter, this method optimizes the filter architecture to enable the reuse of core computational resources,
resulting in a significant reduction in circuit resources and power consumption. A novel architecture filter proposed
in this study is prototyped verified on an FPGA platform, and comparative analyses are conducted with traditional
interpolation filters, multi—channel parallel interpolation filters, and polyphase interpolation filters. The results
indicate that the improved filter requires 65% fewer registers compared to the traditional structure, 73% fewer
registers compared to the multi—channel parallel structure, and 28% fewer registers compared to the polyphase
structure, respectively. The maximum operating clock frequency is increased by 129% compared to the traditional

structure and 13.8% compared to the multi—channel parallel structure. Moreover, power consumption is lower than
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that of traditional structure and multi—channel paralle structure, making it more suitable for high—speed and low—

power consumption applications.

Key words: interpolation; digital filters; field programmable gate arrays (FPGA) ; analog to digital converter;
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Fig.2 Traditional triple interpolation filter
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