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A 3D Object Detection Method Based on Dual Attention Fusion

LEI Zhiyong'
(National Energy Group Shaanxi Shenyan Coal Co. , Ltd. , Yulin 719000, China)

Abstract: An improved method called CS—Voxel-RCNN is proposed to address the issue of insufficient
detection accuracy of Voxel-RCNN algorithm in detecting small distant targets and occluded targets. Firstly, by
introducing three data augmentation methods: random order, random dropout, and random noise, the diversity of
training samples is enriched, thereby enhancing the robustness of the model. Secondly, by integrating CBAM in the
2D backbone network and utilizing channel attention mechanism and spatial attention mechanism, multi-scale
features are processed in more detail, optimizing the feature fusion effect. Finally, by adding a DloU loss branch,
the original loss function is improved, emphasizing the distance information between the target bounding boxes,
thereby improving the accuracy of the target bounding box regression task. Comparative experiments with some
classic 3D object detection algorithms on the KITTI dataset are conducted. The results show that the newly proposed
algorithm has significantly improved performance, compared with the original Voxel RCNN algorithm, with

improvements of 2.91 percentage and 0.87 percentage for pedestrians and cyclists, respectively. The effectiveness of
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each improvement module is verified through ablation experiments. This series of improvement methods achieve

positive results in improving the practicality and accuracy of 3D object detection in real scenes.

Key words: 3D object detection; LiDAR point cloud; data augmentation; attention module ; feature fusion
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Fig.7 The overview structure of CBAM
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gression layer loss ) Fll Ff £ 4325451 2K (direction classifi-
cation loss) , 709 H L. L, H Ly RFos .
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3 FUHE B4 2K L, FUBE R S  BAE AT 40
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0.54%, Ixl < 1

hL1L =
Smoot oss(x) wl = 05, Hib (6)

S 2o SRS TN (1 L S 2 TR ) 2 5

A RE 73 IR Ly T AR IR A 3D 25 (]
oA [ AT 3 2 Y RN E R TE = ) A
PR R T A2 U 2K (cross—entropy loss) BR
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Fig.8 3D DIoU schematic diagram
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PlbsE Z B A 512 s Bk 255 B KITTIE MR 2E 3=
BT VAL A Sl 25 BT SR HLOLE AT 55, I H ARKS:
D T SCA3 8 ST ARG IC LA K B8 238 35 55, JUHAE
F 32 Bl Uk 4 AR A T ISR o
2 9007 SRR A AR, KITTUEE 48 WM R 2 5T
I3 06 B4 s o 0, 36T 7 481 YN ZRFEAS AN
7 518 MMHAAEA , 3l W YIS AE A St — 00
3TI2REARRYYIZREE TS 3 769 MAEA B B iR £E .
KITTT A3 4 6 8 4240 A7 AR 2235 =28 H bR 26
S, EARSEA I H AR RST OB P G O BORT R R R
SIS R (=1 A A NG RN D U S

32 XWiEE

S A1 LT OpenPCDet H 4G I HE 28 52 31
FAHH Inspur YZMB-00882-10F , H1 Ja 4b B 2% (CPU)
A Intel (R) Xeon (R) Silver 4210R, it 13 [ T Ge-
force RTX 4090. #:/F & 4t 4 Ubuntu22.04, CUDA i
AR 117, VR BE 2% 2 HE SR R Pytorch1.10.0. Y1l 588 2
O AR SC Y E B AR : epoch B 80, batch-
size BN 16,5 21 RBLE N 0.01, BUEF Y 0.01,
Zi0.9.

S 2R FH AT L (ToU) 48 45 2K PEAR H bR 2 75 9%
ARG, ToU (9 IBUEE BEITE 0~1 Z [8], o 1 67R
SERITHL , 0 KR A PEHL . H i 4428 51 B ToU 1 F
BE M 0.7, 47 N5 AT H AT 42651 1Y ToU B 243
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TEARBLILEE 2 14 37 5 0 1 v i B AR I TR L L i
X RO A TR S BT, SlSE L Lo,
70.4] m, y 50 A YE BB M [ -40,40] m, 2z [l A LR
[=3, 1] m. iy AR B K/N B E A (0.05 m, 0.05 m,
0.1 m) , TR SR 1 = i AR AL
3.3 ifMriEtR

g T EE A M R SR AT b, Bk IS Y
Voxel-RCNN S35 B £ 1 5 )55 12 A0 ] 1) 2F- S
VAN FE b . 2P — SO e B B T 7E M Re P4
LR TP DR S FIRT P DA T B A b VA 2
HEREIRAEA [T 55 b B PERE 4R T

T B AR Y = 4328 (R e 5l T A1)
(true positive, TP) \E 15 (true negative, TN) \fi IE
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Tab.2 Classification table of prediction results

S T A Positive Negative
True TP TN
False Fp FN

TE HERKE I K B (precision, P)FIH [A13R (re-
call, R) ZPIANSCHEMMERETE bR . P /s B AL i Sy
EFIH A 22/ R BRG], 1 R W3R Ir A B E ] op
A 22/ Bl R R ) I R T A A R

TP

P = T (11)
TP
R_TP+FN (12)

S SR O YK B (mean average precision,
mAP) A AR R . mAP 2 H BRI 55w
MITERETPAGFE AR 2 — , 258 5 JE TR RITE A ] 2 )
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34 AEEEXTE K
3.4.1 BiEfEsR

TR B IR A E A I S B A AR
B 11 AR R XA R T A 7 VA R DR IE 5 At 5
IR B T 11 S 36 (R 3D F A B-F
YRGB AT

N 3 PN, AR 5 42 (eyelist) ZEAY ]
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Tab.3 Comparison of detection accuracy results of different algorithms on the KITTI validation set

P 1% /% I —"
7\3‘(2 - xxAI - - M \ - - i “F A: -
] £ g I X fi] B rh 45 IR ¥ A H. rhisg PRIXE
SECOND!* 90.55 81.61 78.61 55.94 51.14 46.16 82.96 66.74 62.78
PointPillars' ">’ 87.75 78.39 75.18 57.30 51.41 46.87 81.58 62.94 58.98
VPFNet > 91.82 80.57 78.08 61.69 54.97 48.47 91.64 73.26 68.78
MonoLiG!** 92.10 84.36 82.48 62.17 54.49 49.88 89.10 70.38 66.02
PillarNeXt-'®/ 90.23 83.57 80.66 60.20 56.28 45.63 82.61 71.87 65.59
Voxel-RCNN"?* 89.22 79.08 78.36 62.75 56.03 50.76 82.05 71.09 67.14
ARSI 88.95 78.78 78.00 60.79 52.93 48.85 84.93 70.78 68.01
3.42 MIRIELRE K9 R T Bk e R e a0 AE T A g SR AT
FEMIASE EIOSER, R T 40 SRR EATIT  EOUL thellb i (T ) R T (2 ) S
fili g5 R anE 4 Fros . R 2] 1 5 A5 BB B 440 HAR AN T A B s

F4 FEEZXEKITTIARE EHENBELERITLE

Tab.4 Comparison of detection accuracy results of different algorithms on the KITTI test set

P /% P /% P ysl%
Kk w4 fiN B
{7] . A R X 7] A R X ] Hf A PRI
SECOND'™ 88.64 79.00 75.81 51.77 46.20 41.12 75.83 60.82 53.67
PointPillars' '] 86.82 76.15 73.06 51.71 45.14 40.89 77.10 58.65 52.92
VPFNet'?! 91.82 80.57 78.08 61.69 54.97 48.47 91.64 73.26 68.78
MonoLiG'# 90.25 81.43 76.82 61.80 53.37 48.63 78.60 63.71 57.65
PillarNeXt %/ 90.21 81.00 77.63 63.71 50.26 48.34 80.62 71.19 64.96
Voxel-RCNN'?! 92.06 82.84 80.25 62.52 54.61 49.06 84.46 71.32 67.05
ES @RS 91.66 82.25 79.84 60.37 53.05 48.03 86.82 71.05 67.45
E9 3D TAML Rt
Fig.9 Comparison of 3D visualization results
3.5 HELSCIG x5 AEAERKMILERR
16 B Voxel—-RCNN B vE i BLvE |, 38 145 4 A 3 Tab.5 Test results for different modules
BAM DI AP
et AN ] B Bl RSB , 75 KITTI SRS b A5 45 ¢ o0 -
N — e S 70.72
A R . 32 5 SRR T 45 BLBOU R R 0 E y ok
7 AE = A HARZE 0 b P 240K B2 mAP R A7 J 71.22

ST N N 71.56
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