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摘 要：芯片规模的扩大及功能的不断加强，使得芯片验证难度呈几何级数递增 . 对于多

组合激励的功能覆盖情况，传统通用做法是依照其不同使用场景，以分片或切片形式进行统

计 .此类方法操作简单，但难以在随机测试下对各个配置的组合情况进行完整覆盖分析 .针对

该问题，提出了一种基于机器学习算法进行覆盖率快速收敛且通用性强的验证方法 . 该方法

将各个配置激励按权重进行分解处理，对功能覆盖中的关键交叉仓进行观测，利用功能点分

析不消耗仿真时间的特性，对数据集进行收集并训练，通过实际测试调整，实现了一种改进型

的网络结构，可对各种激励组合情况进行覆盖率预测，并可挑选指定覆盖阈值的激励输入 .仿
真结果表明，与随机情况相比，该方法可显著降低仿真时间，并有效减少仿真资源占用；与其

他网络结构相比，该网络收敛更为迅速，并可达到更高的预测精度 .
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Abstract：With the expansion of chip scale and the strengthening of function， the difficulty of verifying chips is 
increasing geometrically. At present， for the functional coverage of multiple combination incentive cases， the 
industry’s common practice is to calculate it in the form of fragments or slices according to different use scenarios. 
This method is easy to operate， but it is difficult to perform a complete coverage analysis of the combination of 
various configurations under random testing. To solve this problem， a verification method based on a machine 
learning algorithm for fast convergence and strong universality of coverage is proposed. In this method， each 
configuration incentive is decomposed according to the weight， and the key cross bins in the function coverage are 
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observed. The data set is collected and trained by the feature that the function point analysis does not consume the 
simulation time. Through the actual test adjustment， an improved network structure is realized， which can predict 
the coverage rate of various incentive combinations， and also can pick an incentive input that specifies a coverage 
threshold. Simulation results show that compared with the random case， the proposed method can significantly 
reduce the simulation time and effectively reduce the simulation resource occupation. Compared with other network 
structures， the proposed network achieves faster convergence and higher prediction accuracy.
  Key words：neural network； functional coverage； random test； training loss

随着芯片规模的不断加大，其验证难度和复杂

度也在不断提高，在完整的开发周期中，验证所花费

的时间已经占到 50% 以上，且仍有不断攀升趋势［1］.
在有限的时间周期和人力成本约束下，传统的验证

模式逐渐不适应芯片的测试任务 .当前芯片验证主

要以受约束的随机测试（constrained random test，
CRT）为主，以期可以发现更多的边界错误［2］，而随机

情况会产生大量的冗余激励［3］，进一步延长验证时

间 .如何在更短时间内实现功能覆盖的快速收敛，已

经成为验证工作的主要挑战［4］.
覆盖率驱动测试［5-6］，是当前普遍使用的验证方

法，目标是通过观测覆盖率指导测试向量生成，其对

各种待测试设计（design under test，DUT）适用性较

强，但收敛速度较慢，相比之下，各种机器学习算法

表现出了优秀性能 .文献［7-9］采用遗传算法进行分

析，利用其交叉及变异特性进行激励加速 .贝叶斯网

络［10］、马尔科夫链［11-14］、决策树［15］、支持向量机［16］、聚
类［17］等智能化算法也表现出了优异性能 .近年来，随

着深度学习技术的成熟，验证模式也有了新的发展

方向，文献［18］采用深度学习网络进行覆盖预测，可

在更少的指令条件下达到更高的代码覆盖率 .文献

［19］采用深度神经网络（DNN）算法进行隐式过滤，

从而实现覆盖率的加速收敛，文献［20］采用了一种

自适应神经网络，以加速有限序列的生成 .文献［21］
提出了一种结合机器学习的硬件验证环境，可实现

约束的实时更新 .文献［22］对 DNN、随机森林、支持

向量机（SVM）、长短期记忆（LSTM）等多种网络结构

进行了尝试，通过事务修剪及有向序列生成，有效提

高了覆盖率的收敛速度 .以上算法在不同程度上实

现了对覆盖率的加速提升，但其多为针对特定待测

设计开发而成，普适性较差 .
目前对于专用集成电路的设计，通常设置多种

配置模式，以使其满足不同场景下的功能需求 .对于

验证人员而言，理论上需对所有配置项进行遍历，以

满足测试完备性 .实际工作中，每增加一项配置，排

除与其他项的互斥因素，其验证复杂度基本为倍数

增长，这导致芯片验证的复杂度与配置项几乎呈指

数关系、状态空间出现爆炸情况［23］.在随机测试情况

下，根据粗略的统计，庞大的配置集合，其所用的完

整测试案例达到配置集数据的百倍以上 .考虑其复

杂度如此宏大，目前功能覆盖率的统计多采用切片

处理，即对各个配置项单独统计，或分析特定场景部

分配置项的组合情况 .其统计办法较为粗糙，且不能

充分覆盖不同配置的组合情况 .
针对上述问题，为满足约束随机测试模式下的

交叉覆盖，提出了一种改进型引擎网络（engine opti⁃
mization net， EoNet），通过模型训练及参数调节，在

随机测试模式下，可迅速挑选出超过阈值范围的功

能覆盖生成向量，从而达到较高的覆盖要求 .与传统

模式及常用的神经网络相比，文中算法的预测精度

更高，可在更短的测试向量或更少的资源占用下达

到覆盖率的快速收敛 .

1   设计及验证需求

对于采用较多配置的芯片验证，本方法具有普

适性 .本文以数字滤波芯片为例进行说明，其主体结

构如图 1 所示 . 其中最左侧为 AD 接口，主要包含数

据输入及相关控制信号；最右侧为CPU接口，主要进

行芯片的参数配置及对滤波后结果的读取 . 图 1 中

心一列为芯片的配置寄存器，其包含多种配置模式，

如滤波模式可选择 FIR 滤波、IIR 滤波、先 FIR 后 IIR
滤波；数据输入输出可采用串行或并行方式；输入输

出采样率范围；AD 采样位宽；AD 串行采样通道数，

每通道采样数据等 .各个配置参数之间既有组合情
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况，又有限定及互斥情况 .功能点交叉情况复杂，覆

盖集较为庞大 .
该验证平台的功能覆盖率模型由覆盖组（cover 

group）实现，依据配置寄存器的特点及组合应用场

景，划分为多个覆盖点（cover point）. 每个覆盖点依

据复杂度创建相应数量的仓（bin），并在仿真中记录

该覆盖点是否被覆盖及覆盖次数 .针对单个配置寄

存器参数，设定单点仓（single bins）；针对寄存器功

能点组合情况及应用场景，设置交叉仓（cross bins）
和深度交叉仓 .

测试的核心激励为配置寄存器的随机组合情

况 .除滤波器系数需根据场景使用特定的数据外，其

余所有配置均可进行随机处理，并进行功能覆盖点

观测 .共设计单点覆盖点 51个，交叉覆盖点 43个，其

中交叉覆盖点中深度交叉覆盖点数目为 8，功能覆盖

需满足上述覆盖点中所有仓均实现命中 .排除参数

互斥条件，交叉仓可认为是其中各个覆盖点仓数的

乘积，而深度交叉仓可认为是其中交叉仓的乘积，因

此深度交叉仓的覆盖是实现功能完备性的关键 .在
受约束随机测试条件下，要实现其完整覆盖，所需测

试集极大，且包含诸多重复案例情况，因此考虑借助

神经网络实现 .

2   网络数据集生成

设置的 8 个深度交叉覆盖点共包含 27 036 个

仓，占到所有仓的 80%左右，且涵盖了所有典型测试

场景 .故而将其覆盖率情况作为学习网络的输出，与

其有相关度的配置参数，如滤波模式、输入数据串并

行情况等，作为学习网络的输入，所有配置参数的组

合情况即可实现完整覆盖 .

验证环节会占用大量仿真资源，如CPU使用、内

存及硬盘占用等 .为加速测试案例完成，实际中通常

采用多进程并行仿真方式实现 .考虑采用较少资源

占用满足测试情况，将仿真进程并行度作为一个输

入参数，设定范围为 5~70.每个进程仿真事务数目直

接影响仿真的时间，将其作为参数输入，设定范围为

500~30 000.考虑到这两个参数数值波动较大，容易

导致训练不收敛，采用 min-max 方法对其进行归一

化处理，其余参数由于本身即为权重大小，将其转换

为对应百分比即可 .最终实现的神经网络输入参数

见表 1，其中前七个参数分别对应图 1 中的 SCR、

ADCR、ADSR、DOSR、INTR 等配置寄存器，cpu_par⁃
allel对应CPU接口的HPAR_N端口 .

图 2 所示为网络生成与使用流程图，该验证过

程 使 用 统 一 验 证 方 法 学［24］（universal verification 
methodology， UVM）实 现 . 在 其 随 机 生 成 组 件

uvm_sequence_item中，生成数据以权重体现，为简化

操作，设定每个变量的权重分布总和为 100，各参数

可在 0~100 之间随机产生 . 考虑部分数值过低或过

高会有明显不合理情况，将其数值进行进一步约束 .
生成数据送入测试平台中运行，并收集得到的输出

图1   数字滤波芯片主体结构

Fig.1   Digital filter chip main structure
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功能覆盖率数据，与输入数据向量送入网络进行训

练，得到可使用的网络模型 .再随机生成大量输入数

据，送入网络进行前向传播，然后将得到的功能覆盖

率数据进行筛选，超过设定阈值的数据进行排序后，

选取结果重新送入测试平台中运行，选定其中的覆

盖率最高值，最终采用该组参数进行完整仿真测试 .

神经网络的一个难点在于需要大量的训练集数

据［25-26］，对于代码覆盖率，需经过完整的事务仿真后

得到覆盖率结果，这本身需要占用大量时间，在功能

仿真中无明显优势 . 而对于功能覆盖点，uvm_se⁃
quence 组 件 在 生 成 一 笔 随 机 事 务 后 可 通 过

uvm_driver 直接传递到覆盖组件 uvm_subscriber，经
分析即可产生功能覆盖率结果，此后可结束仿真进

程，不必经过待测设计，而此过程不消耗仿真时间，

如图3中实线箭头所示 .

3   神经网络设计

神经网络的输入构造为 1×21的一维向量，输出

为 1×8 的一维向量，由于没有绝对正确性的判定条

件，采用输出值的均方误差来判别学习的准确度 .考
虑网络的输入和输出呈相对线性关系，且与图像或

语音相比，其输入数据量相对较小，尽量采用简单的

神经网络［27］. 本文分别采用多层感知机（multilayer 
perceptron，MLP）、手写体识别卷积神经网络［28］

（LeNet）与改进型引擎网络EoNet实现并进行比较 .
3.1   简单网络实现

与其他深度学习网络相比，MLP 计算量相对较

小，但仍有较好的泛化能力及非线性表达，应用范围

广泛 .综合考虑模型复杂度及参数影响情况，经多次

尝试，采用MLP的网络实现，设计的神经网络总体如

图 4 所示 . 共包含四个隐层，为保持中间数据规模，

设定第一隐层神经元为 800，其余各个隐层的神经元

数量设定依次减少为600、400、200.
由于输入数据向量较小，也可考虑采用经典手

写识别网络LeNet实现，图 5所示为参照实现的网络

图2   神经网络生成及使用流程

Fig.2   Neural network generation and use

图3   UVM环境中训练集生成过程

Fig.3   Training set generation process in UVM

图4   MLP网络实现

Fig.4   MLP network implementation

表1   输入参数说明

Tab.1   Input parameters description

名称

filter_mode
prob_im_inter
prob_mo_inter
sample_i_khz

ad_parallel
ad_bitwidth

int_mode
cpu_parallel
multiprocess

tr_times

参数数目

3
2
2
3
2
3
2
2
1
1

说明

FIR、IIR、FIR+IIR情况权重

滤波输入级与中间级相等与否权重

滤波中间级与输出级相等与否权重

采样率分段权重

采样串/并行权重

采样数据位宽分段权重

滤波结果读取中断/查询模式权重

CPU对滤波结果串/并行读取权重

仿真进程并行度

每个进程仿真事务数目
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结构 .其输入数据设定为一维维度，经两次卷积和最

大池化后进入全连接层 .其中卷积核大小为 1×4，池
化的卷积核及步长为 1×2，激活函数采用 Sigmoid
函数 .

3.2   EoNet网络实现

实验表明，MLP 网络训练精度相对较低 .LeNet
虽为CNN结构，但由于数据仍为一维维度，且池化层

的存在进一步减少了数据量大小，其效果并不理想，

因此对其进行改进 .网络设计主要基于以下几个方

面的考虑：

1） 考虑一维卷积核对数据量减少较为明显，为

便于利用卷积的特性，将输入数据排列为二维方形

结构，并在末尾补零，由 1×21形状改为 5×5大小 .池
化层的存在不利于特征向量的保存，因此网络中去

掉了池化层 .
2） 实验表明，适当增加中间数据量可显著提高

网络精度，同时网络首层需尽量保存边缘信息 .综合

考量，设计的卷积块如图 6所示，上层 1×1卷积块主

要为增加通道维度，使通道数增加到 16，之后 3×3卷

积在四周进行一层数据填充，如此保持其输出的     
宽和高与输入一致，并将通道数增加到 32.下层进行

1×1 卷积仅将通道数增加到 32，保持了初始数据信

息 .最终两个并行通路的输出在通道维度上进行连

接，并经 ReLU 激活函数输出，最终得到 64 通道的      
5×5向量 .

3） 第二、三层设计主要参照残差网络（residual 
network，ResNet），其实现核心在于解决深层网络中

的梯度消失和梯度爆炸问题［29］，但其相加特性也有

助于保留低级特性，且批量归一化的引入提高了模

型的泛化能力 .
综合考虑性能与复杂度，网络共设置两个残差

块，每个块的结构如图 7 所示 . 共设置两级，每级均

包含两组 3×3 卷积及批量归一化，输出与输入相加

后送入下一级，最终结果经 ReLU 激活函数输出 .其
中第一残差块输入输出维持通道数不变，均为 64，第
二残差块将输出通道数扩至 128.最终实现的网络整

体结构如图 8 所示，残差块输出后展平进入三级全

连接层，得到最后输出 .

4   实验结果

4.1   神经网络训练结果对比

为便于直观比较，所有网络的损失函数都为均

方差，训练与测试损失都为一个周期的总损失与向

量数目的比值 .以上三种网络的损失如图 9所示 .可
以看出，三种神经网络的训练和测试损失的下降趋

势均保持一致，证实网络得到有效训练 .其中 LeNet
在前几百周期内损失保持不变，调节参数后效果仍

不明显，考虑其陷入局部最小值 .

图5   LeNet网络实现

Fig.5   LeNet network implementation

图6   首层卷积块

Fig.6   First layer convolution block

图7   残差块结构

Fig.7   Residual block structure

图8   EoNet网络实现

Fig.8   EoNet network implementation
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图 10 为三种网络的训练损失比较 . 从图 10（a）
可以看出：相比于 MLP 及 LeNet，本文提出的 EoNet
收敛更为迅速 . 图 10（b）为 10 万次迭代后三种网络

训练损失，考虑总训练周期较大，后期三种网络的损

失均趋近于零，为便于观测，此处采用对数坐标形

式 .可以看出：MLP最终稳定在 10-5量级，LeNet稳定

在10-3量级，而EoNet可以下探到10-6量级 .
4.2   覆盖率实测结果

训练后的模型可用于对随机输入向量进行     
筛选，设定输出阈值为 98.5%，并对输入向量进行排

序，可选择最低资源占用（并行进程数）、最快速度

（进程仿真事务数）或最高覆盖情况 .排序后的输入

向量进入测试平台进行实测，最终各个测试情况如

表2所示 .

对于最少资源情况，仅需 23个并行进程即可实

现 99%以上覆盖，而原始随机覆盖率仅为 73%左右 .
对于最快速度情况，虽然进程数有所增加，但仿真事

务数目仅为 10 000个左右，这会大幅减少仿真时间，

且与原始随机覆盖率相比效果明显 .而对于最高覆

盖情况，其关键仓覆盖率与其他相比略有提高，但与

原始随机覆盖率比较效果不甚明显，且资源占用相

对较大，实际应用中需综合考量 .

（a）三种网络在1 000次迭代损失对比

（b）三种网络在10万次迭代损失对比

图10   三种网络的训练损失对比

Fig.10   Training loss of each neural network

表2   不同需求下关键仓覆盖情况

Tab.2   Key bins coverage under different needs

不同需求

最少资源

最快速度

最高覆盖

进程数

23
61
67

仿真

事务数

28 320
10 269
28 681

关键仓

覆盖率/%
99.07
98.33
99.43

原始随机

覆盖率/%
73.10
72.72
85.53

加速比

1.36
1.35
1.16

（a）MLP训练效果

（b）LeNet训练效果

（c）EoNet训练效果

图9   各个神经网络训练效果

Fig.9   Training effect of each neural network
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5   结束语

针对随机测试不便对功能点组合情况完整覆盖

测试的问题，利用功能覆盖分析不消耗仿真时间的

特性，设计了一种轻量化的卷积神经网络 EoNet. 通
过对输入进行权重处理，数据向量进行重新分布，并

结合参数优化，实现了对任意激励覆盖情况的预测 .
与传统测试方法相比，该方案可在较少测试向量或

较低仿真资源使用情况下达到指定覆盖要求，同其

他标准神经网络相比，其表现出更快的收敛性及更

高的预测精度 .综上所述，文中算法对基于机器学习

技术的功能覆盖方法进行了探索，为复杂模式下的

芯片测试提供了一种通用性强的解决思路 .

参考文献

［1］ FOSTER H D．Trends in functional verification：a 2014 industry 
study［C］//Proceedings of the 52nd Annual Design Automation 
Conference．San Francisco California．ACM， 2015： 1-6．

［2］ VANARAJ A T，MARSHAL R，LAKSHMINARAYANAN G，et al．
Optimal test scenarios based regression suite for functional 
verification closure of advanced digital designs ［C］//2024 
International Conference on Smart Systems for applications in 
Electrical Sciences （ICSSES）. Tumakuru，India． IEEE，2024：
1-6．

［3］ YEHIA A． Faster coverage closure：Runtime guidance of 
Constrained Random stimuli by collected ［C］//2013 Saudi 
International Electronics， Communications and Photonics 
Conference. Riyadh，Saudi Arabia．IEEE，2013：1-6．

［4］ RAHUL L， NAVEEN S， SEKHAR D. Coverage Acceleration and 
Testcase Pruning using Smart Stimuli Generator in SOC 
Verification［C］// Proceedings of the Design and Verification 
Conference （DVCON）. India： 2023： 1-10.

［5］ 沈海华，卫文丽，陈云霁．覆盖率驱动的随机测试生成技术综

述［J］．计算机辅助设计与图形学学报，2009，21（4）：419-431．
SHEN H H，WEI W L，CHEN Y J．A survey on coverage directed 
generation technology［J］. Journal of Computer-Aided Design & 
Computer Graphics， 2009， 21（4）： 419-431．（in Chinese）

［6］ IMKOVÁ M，KOTÁSEK Z． Automation and optimization of 
coverage-driven verification［C］//2015 Euromicro Conference on 
Digital System Design． Madeira，Portugal．IEEE，2015：87-94．

［7］ 沈海华，王朋宇，卫文丽，等．基于遗传算法的全芯片级覆盖率

驱动随机验证技术［J］．计算机研究与发展，2009，46（10）：

1612-1625．

SHEN H H，WANG P Y，WEI W L，et al．A coverage directed 
test generation platform for microprocessors using genetic approach
［J］. Journal of Computer Research and Development，2009，       
46（10）： 1612-1625．（in Chinese）

［8］ 罗汉青，梁利平，叶甜春．基于遗传算法的随机测试生成技术

探究［J］．电子测试 ，2013（13）：75-77．
LUO H Q，LIANG L P，YE T C．Genetic algorithm based random 
test generation：a case study［J］．Electronic Test，2013（13）：75-
77．（in Chinese）

［9］ DANCIU G M，DINU A． Coverage fulfillment automation in 
hardware functional verification using genetic algorithms［J］．

Applied Sciences，2022，12（3）：1559．
［10］ FINE S，ZIV A．Coverage directed test generation for functional 

verification using Bayesian networks ［C］//Proceedings 2003．
Design Automation Conference. Anaheim，CA，USA. IEEE，2003： 
286-291．

［11］ BÖHME M，PHAM V T，ROYCHOUDHURY A．Coverage-based 
greybox fuzzing as Markov chain［J］. IEEE Transactions on 
Software Engineering，2019，45（5）： 489-506．

［12］ WAGNER I， BERTACCO V， AUSTIN T. Microprocessor 
verification via feedback-adjusted Markov models［J］. IEEE 
Transactions on Computer-Aided Design of Integrated Circuits 
and Systems，2007，26（6）：1126-1138．

［13］ WANG J，LI H W，LV T，et al． Abstraction-guided simulation 
using Markov analysis for functional verification ［J］. IEEE 
Transactions on Computer-Aided Design of Integrated Circuits 
and Systems， 2016， 35（2）： 285-297．

［14］ ZHANG M M，GENG S Q，WANG W S，et al． Probabilistic 
analysis for sequential circuits verification using Markov chains
［J］． IEEE Transactions on Circuits and Systems Ⅱ ：Express 
Briefs，2021，68（1）：481-485．

［15］ YE F M，ZHANG Z B，CHAKRABARTY K，et al． Adaptive 
board-level functional fault diagnosis using decision trees［C］//
2012 IEEE 21st Asian Test Symposium． Niigata，Japan．IEEE，

2012：202-207．
［16］ ROMERO E，ACOSTA R，STRUM M，et al. Support vector 

machine coverage driven verification for communication cores［C］//
2009 17th IFIP International Conference on Very Large Scale 
Integration （VLSI-SoC）. Florianopolis，Brazil． IEEE，2009：
147-152．

［17］ EL MANDOUH E，SALEM A，AMER M，et al． Cross-product 
functional coverage analysis using machine learning clustering 
techniques［C］//2018 13th International Conference on Design & 
Technology of Integrated Systems In Nanoscale Era （DTIS）． 
Taormina，Italy．IEEE，2018：1-2．

［18］ 王培鑫 . 基于机器学习的处理器验证技术研究［D］. 北京：中国

科学院大学， 2020： 1-64.

128



第 8 期 刘光宇等：基于机器学习的功能覆盖率预测算法

WANG P X. Research on processor verification technology based 
on machine learning［D］. Beijing： University of Chinese Academy 
of Sciences， 2020： 1-64. （in Chinese）

［19］ GAL R，HABER E，ZIV A．Using DNNs and smart sampling for 
coverage closure acceleration［C］//Proceedings of the 2020 ACM/
IEEE Workshop on Machine Learning for CAD. Virtual Event 
Iceland．ACM，2020：15-20．

［20］ GAD M，ABOELMAGED M，MASHALY M，et al． Efficient 
sequence generation for hardware verification using machine 
learning ［C］//2021 28th IEEE International Conference on 
Electronics，Circuits，and Systems （ICECS）. Dubai，United Arab 
Emirates．IEEE，2021：1-5．

［21］ ABOELMAGED M，MASHALY M，ABD EL GHANY M A．

Online constraints update using machine learning for accelerating 
hardware verification［C］//2021 3rd Novel Intelligent and Leading 
Emerging Sciences Conference （NILES）. Giza，Egypt． IEEE，

2021：113-116.
［22］ GOGRI S，TYAGI A，QUINN M，et al．Transaction level stimulus 

optimization in functional verification using machine learning 
predictors［C］//2022 23rd International Symposium on Quality 
Electronic Design （ISQED）. Santa Clara，CA，USA．IEEE，2022：
71-76．

［23］ WILE B， GOSS J C， ROESNER W. 全面的功能验证：完整的工

业流程［M］. 北京： 机械工业出版社， 2010.
WILE B， GOSS J C， ROESNER W. Comprehensive Functional 
Verification： The Complete Industry Cycle［M］. Beijing： Chinese 

Machine Press， 2010.（in Chinese）
［24］ HARSHITHA N B，PRAVEEN KUMAR Y G，KURIAN M Z．An 

Introduction to Universal Verification Methodology for the digital 
design of Integrated circuits （IC’s）：a Review［C］//2021 
International Conference on Artificial Intelligence and Smart 
Systems （ICAIS）． Coimbatore，India．IEEE，2021：1710-1713．

［25］ CHOI J， NOH S， HONG S， el al. Finding a Needle in a 
Haystack： A Novel Log Analysis Method with Test Clustering in 
Distributed Systems ［C］//Proceedings of the Design and 
Verification Conference （DVCON）. United States， 2022： 1-11.

［26］ YU D， FOSTER H， FITZPATRICK T. A Survey of Machine 
Learning Applications in Functional Verification ［C］// 
Proceedings of the Design and Verification Conference （DVCON）. 
United States， 2022： 1-9.

［27］ WANG F C，ZHU H B，POPLI P，et al． Accelerating coverage 
directed test generation for functional verification：a neural 
network-based framework［C］//Proceedings of the 2018 Great 
Lakes Symposium on VLSI. Chicago IL USA. ACM，2018：
207-212．

［28］ LECUN Y，BOTTOU L，BENGIO Y，et al. Gradient-based 
learning applied to document recognition［J］. Proceedings of the 
IEEE，1998，86（11）：2278-2324．

［29］ HE K M，ZHANG X Y，REN S Q，et al．Deep residual learning 
for image recognition［C］//2016 IEEE Conference on Computer 
Vision and Pattern Recognition （CVPR）. Las Vegas，NV，USA．

IEEE，2016：770-778．

129


