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Functional Coverage Prediction Algorithm Based on Machine Learning
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Abstract: With the expansion of chip scale and the strengthening of function, the difficulty of verifying chips is
increasing geometrically. At present, for the functional coverage of multiple combination incentive cases, the
industry’ s common practice is to calculate it in the form of fragments or slices according to different use scenarios.
This method is easy to operate, but it is difficult to perform a complete coverage analysis of the combination of
various configurations under random testing. To solve this problem, a verification method based on a machine
learning algorithm for fast convergence and strong universality of coverage is proposed. In this method, each

configuration incentive is decomposed according to the weight, and the key cross bins in the function coverage are
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observed. The data set is collected and trained by the feature that the function point analysis does not consume the

simulation time. Through the actual test adjustment, an improved network structure is realized, which can predict

the coverage rate of various incentive combinations, and also can pick an incentive input that specifies a coverage

threshold. Simulation results show that compared with the random case, the proposed method can significantly

reduce the simulation time and effectively reduce the simulation resource occupation. Compared with other network

structures, the proposed network achieves faster convergence and higher prediction accuracy.

Key words: neural network ; functional coverage; random test; training loss
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