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Fault Prediction of Wind Turbine Yaw System Based on CNN—-SLinformer
Algorithm

HUO Jiuyuan®, XIE Dongchen, CHANG Chen, LI Xin

(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract: With the rapid development of the wind power industry, the proportion of wind turbine failures
resulting in downtime is also increasing, particularly yaw system failures, which account for nearly one—third
(28.7%) of total downtime. To reduce downtime and operational costs, this paper proposes a deep learning model
based on SCADA data, named CNN-smart_Linformer (CNN-SLinformer) , for predicting the occurrence time of
yaw system failures in wind turbines. This model introduces dynamic self-attention weight calculations for the linear
projection matrix, allowing it to adaptively capture changes in the input sequence and significantly enhancing the
model’s generalization ability in different operating environments. It combines the advantages of convolutional neural
networks (CNN) in local feature extraction with the capability of SLinformer to capture long—term dependencies.

Experimental results using actual SCADA data from wind farms show that the CNN-SLinformer model significantly
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improves prediction accuracy for yaw failure tasks, reducing the score to 144.50, while it also has a shorter runtime,

providing an effective predictive tool for wind farms.

Key words: wind turbine; yaw system; convolutional neural networks (CNN) ; SLinformer; fault prediction
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Fig.1 Yaw system control structure
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Fig.6 Time series plots of different features
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Tab.3 Experimental parameter settings

R fH
Batch size 144
Learning rate 0.001
Epoch 200
P PR ReLU
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Tab.4 Prediction analysis of fault occurrence time of wind

turbine yaw system

(B4 I k1 /d SR ] /d TIN5 25/d
2 2.638 8 3.000 4 0.361 6
3 17.397 0 18.013 8 0.616 8
4 3.9513 43238 03725
5 24.805 5 24.909 3 0.103 8
6 13.538 2 23.944 4 10.406 2
7 7.340 2 7.642 4 0.3022
8 13.8132 14.0 0.186 8
9 5.8323 5.6250 -0.207 3
10 249163 27.625 2.708 7
11 6.361 1 6.673 7 03126
12 12.5329 12.506 9 -0.026
13 0.1805 0.526 5 0.346 0
14 98.2452 103.460 0 52148
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Fig.5 Comparison of experimental results
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