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基于CNN-SLinformer算法的风电机组偏航
系统故障预测

火久元 †，谢东宸 ，常琛 ，李昕 
（兰州交通大学 电子与信息工程学院， 甘肃 兰州 730070）

摘 要：随着风电产业的快速发展，风电机组故障停机的比例也在上升，其中偏航系统故

障尤为突出，占据了总停机时间的近三分之一（28.7%）. 为减少停机时间和运维费用，本文提

出了一种基于 SCADA 数据的深度学习模型 CNN-Smart_Linformer（CNN-SLinformer），用于预

测风电机组偏航系统的故障发生时间 . 该模型通过引入动态自注意力权重计算线性投影矩

阵，自适应地捕捉输入序列的变化，显著增强了模型在不同运行环境下的泛化能力 .它结合了

卷积神经网络（CNN）在局部特征提取的优势与 SLinformer 在捕捉长期依赖关系的能力 . 实际

风电场 SCADA数据的实验结果表明，CNN-SLinformer模型在偏航故障预测任务中显著提高了

预测精度，Score 降低至 144.50，同时模型运行时间更短，为风电场提供了有效的故障预测

工具 .
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Fault Prediction of Wind Turbine Yaw System Based on CNN-SLinformer 
Algorithm
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Abstract：With the rapid development of the wind power industry， the proportion of wind turbine failures 
resulting in downtime is also increasing， particularly yaw system failures， which account for nearly one-third 
（28.7%） of total downtime. To reduce downtime and operational costs， this paper proposes a deep learning model 
based on SCADA data， named CNN-smart_Linformer （CNN-SLinformer）， for predicting the occurrence time of 
yaw system failures in wind turbines. This model introduces dynamic self-attention weight calculations for the linear 
projection matrix， allowing it to adaptively capture changes in the input sequence and significantly enhancing the 
model’s generalization ability in different operating environments. It combines the advantages of convolutional neural 
networks （CNN） in local feature extraction with the capability of SLinformer to capture long-term dependencies. 
Experimental results using actual SCADA data from wind farms show that the CNN-SLinformer model significantly 
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improves prediction accuracy for yaw failure tasks， reducing the score to 144.50， while it also has a shorter runtime， 
providing an effective predictive tool for wind farms.
  Key words：wind turbine； yaw system； convolutional neural networks （CNN）； SLinformer； fault prediction

随着可持续发展理念深入人心，风电等新能源

行业逐渐发展为主流，成为“双碳”目标实现以及推

动绿色发展的重要因素 .“双碳”发展目标与行动方

案的落地使得风电产业迎来历史性机遇 .风能作为

一种清洁、可再生的能源形式，其重要性正日益凸

显 .风能资源分布广泛、清洁无污染和取用不尽等特

点使其发展前景具有巨大空间 .相较于其他新能源，

风能资源更容易获取，生产成本低，运行维护简单 .
因此，风电成为支持电力系统率先脱碳进而推动能

源系统与全社会实现碳中和的主力军［1］.然而随着风

电机组单机容量的不断增加及结构越来越复杂，故

障率明显上升 .

风电机组作为风能利用的关键设备之一，其稳

定运行影响着供电网络的可靠性和效率 .风电机组

主要包括叶片、齿轮箱、发电机、变桨系统、偏航系统

等关键部件［2］.其中，偏航系统是实现风电机组快速、

精准对风，捕获最大风能的关键执行机构之一 .本文

研究以永磁同步电机（PMSM）作为偏航系统的驱动

电机，构建包含电流环、速度环和位置环的三闭环控

制系统来模拟偏航伺服系统［3］，如图 1所示 .将风向

信号和机舱位置信号之间的误差送入位置调节器，

输出速度环给定信号，并与机舱转速做差送入速度

调节器，输出电流环给定信号，再与电机定子电流做

差送入电流调节器，最后通过电流控制器输出三相

定子电压来控制偏航电机进行偏航操作 .

风电机组偏航系统具有连接机舱与塔筒的作

用，主要功能是使风轮对准风向及机组自动解缆，其

与风电机组运行的经济性和安全性有极大关联 .风
电机组偏航系统承受多重载荷，具有故障频率高的

特点，其产生的故障具有难以排除与修复、更换难度

大和费用高等特点［2，4］.
随着机器学习、人工智能等技术的迅速发展，基

于风电机组正常行为的预测模型已被广泛应用于运

行状况监测和故障预测研究［5］.近年来，针对风电机

组偏航故障的预测与诊断问题，基于 SCADA（监控

和数据采集）数据的方法逐渐成为研究的热点［4，6-8］.
SCADA系统作为风电机组中常用的实时监控系统，

能够采集和记录风机运行时的数据 .利用这些丰富

的 SCADA 数据，结合先进的数据分析技术，可以实

现对风电机组偏航故障的预测，为风电机组偏航管

理提供科学参考和决策支持［8-9］.如 Kusiak等［10］通过

分析 SCADA 数据，挖掘出了与风电机组轴承、电机

等关键零部件故障相关的信息：构建数据模型用于

揭示主轴和塔架的振动与风电机组运行参量间的关

联特性；利用神经网络算法，成功诊断出风电机组轴

承故障且故障诊断精度高达 96%，并提早 1.5 h预测

到轴承失效 .Zhang等［11］提出基于信号处理和深度学

习理论的 EMD-LSTM 方法，预测风电机组故障停机

发生时间 .Wu等［7］针对风电机组偏航系统故障处理

难度大和危害严重，基于 SCADA数据开发出了偏航

齿轮箱神经网络故障诊断模型 .Bi 等［12］将人工智能

图1   偏航系统控制结构

Fig.1   Yaw system control structure
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应用于 SCADA数据，并将风力发电机组的预测功率

输出同实际输出进行比较，以预测误差作为故障检

测的指标 .段圣猛等［13］提出了一种状态异常程度指

标以识别风电机组状态的方法，并以同一风电场的 2
台同型号机组的 SCADA数据进行分析，结果表明能

实现机组异常运行状态识别及早期预警 .风电机组

故障预测虽引起了业界学者的重视，但现阶段针对

风电机组偏航系统故障预测的研究还相对较少 .
本文旨在基于 SCADA数据，探索风电机组偏航

故障的预测方法，以进一步提升风电机组偏航故障

预测的准确性和可靠性 .在构建预测模型时结合机

器学习算法和特征工程技术，从 SCADA数据中提取

关键特征，建立能够准确预测风电机组偏航故障的

模型 .本研究的主要贡献如下：

1）从风电场 SCADA 系统中导出包含多种测量

参数的原始运行数据，如叶片转速、发电机功率、轴

承温度等 .针对每台风机，采用滑动窗口法对这些时

间序列数据进行特征抽取，生成包含均值、标准差、

最大值、最小值等统计指标的特征向量 .同时，将这

些 SCADA 数据样本与该时段内的风机故障记录进

行时间对齐和关联，为每个 SCADA 数据样本标记

“发生故障”和“未发生故障”的标签 .
2）引入动态自注意力权重计算线性投影矩阵，

自适应动态地关注输入序列中不同部分的重要性，

增强模型对关键信息的提取能力，更准确地提取序

列特征，提高模型的性能 .
3）将训练好的模型代入其他不同风机，训练效

果良好，预测发生偏航故障的时间较为精确，表明该

模型具有优秀的迁移学习能力，能够在不同类型、不

同环境的风机上发挥出色的性能 .

1   理论基础

1.1   CNN神经网络

卷积神经网络（convolutional neural networks，
CNN）是一种常见的深度学习模型 .它使用滑动窗口

的方式将卷积核应用到输入数据的不同局部区域，

每次滑动，卷积核都会与局部区域进行一次卷积运

算，从而提取出该区域的特征信息 .通过这种方式，

CNN 能够有效地捕捉局部感知域中的重要特征，最

终形成新的特征表示，卷积核遍历原数据所有特征，

卷积运算后求和 .通过卷积运算，可以捕获数据中的

局部模式和结构，帮助模型学习到更高层次的抽象

特征，从而降低运算成本，提高学习效率［14］.改变卷

积核与步长大小，可以得到不同大小、样式的新特

征，从而满足不同网络的运算需求 .通过卷积操作，

CNN 可以在保留有用信息的同时减少特征的维度，

更好地处理输入数据中的局部关联性 .
1.2   Transformer模型

为了应对传统神经网络在处理序列数据时存在

的长期依赖难以捕捉、计算效率较低等问题，研究者

们提出了 LSTM、注意力机制、CNN 结合 RNN 等手

段，但对于长序列数据，内存限制仍阻碍对训练样本

的批量处理 .2017 年提出的 Transformer 神经网络架

构以一种避免循环的模型结构，完全依赖于 Atten⁃
tion机制对输入输出的全局依赖关系进行建模，抛弃

了传统的循环或卷积神经网络结构［15］.近年来，在时

间序列预测问题上，许多学者尝试引入 Transformer
模型以提高预测效果，李川等［15］基于 Transformer 模
型构建了时间序列预测模型，并以流感病患数量预

测作为案例研究，所提模型效果优于其他深度学习

模型；杨国亮等［16］将 Transformer 模型应用于实时交

通状况预测中，高效地实现了良好的交通预测；Li
等［17］将Transformer模型改进后应用于时间序列预测

问题上，实验结果表明其优于 ARIMA、DeepAR 和

DeepState等许多模型；Nascimento等［8］改进了时间序

列 Transformer 模型，有效提高了在长时间间隔中预

测风速与风能的准确性，同时降低了计算复杂度 .
Transformer 模型的多头自注意力机制如图 2 所

示，多头自注意力能让模型的不同位置互相注意到

不同子空间的表征信息，它的计算如式（1）所示：

head i = Attention (QW Q
i ，KW K

i ，VW V
i ) =

               
softmax ( [ QW Q

i (KW K
i )

dk
]) ⋅

P

VW V
i （1）

式中：Q，K，V代表输入的嵌入矩阵；W Q
i ，W K

i ∈ Rdm × dk， 
W V

i ∈ Rdm × dv 为三个待训练学习的参数 . 计算时需要

把序列中每个位置的 token都两两组合，即需要将两

个 n × d的矩阵相乘，时间复杂度和空间复杂度都是

O (n2 )［18］.
1.3   皮尔逊相关系数

皮尔逊相关系数（Pearson correlation coefficient）
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是由卡尔·皮尔逊在 19世纪 80年代提出的，用于度

量两个变量之间的线性相关程度，其值介于-1 和 1
之间，接近-1表示负相关，接近 1表示正相关，接近 0
表示无相关［19］. 两个变量的皮尔逊相关系数用它们

的协方差与方差的商表示 .其定义如式（2）所示：

r = ∑
i = 1

n

( )xi - x̄ ( )yi - ȳ

∑
i = 1

n

( )xi - x̄ 2∑
i = 1

n

( )yi - ȳ 2
（2）

x̄ = 1
n∑

i = 1

n

xi （3）
ȳ = 1

n∑
i = 1

n

yi （4）
式（2）估算样本的协方差和标准差，可得到皮尔

逊相关系数 r，其中 x̄和 ȳ分别代表变量 x和变量 y的

样本均值 .
1.4   评价指标

本文使用平均绝对误差、均方根误差和评分函

数Score三个指标评价模型预测效果 .
1）平均绝对误差（mean absolute error，MAE）用

于衡量回归模型预测误差的指标，它表示平均预测

误差的大小；MAE的值越小，说明模型的预测误差越

小 .其定义如式（5）所示：

MAE = 1
n∑

i = 1

n

|| yi - ŷ i （5）
式中：yi为实际值；ŷ i为模型的预测值；n为样本个数 .

2）均方根误差（root mean squared error，RMSE）
用于衡量预测模型在连续性数据上的预测精度，表

示预测值与真实值之间的平均偏差程度 .其定义如

式（6）所示：

RMSE = 1
m∑

i = 1

m ( )yi - f ( )xi 2
（6）

式中：yi和 f ( xi )分别表示第 i个样本的真实值与预测

值；m为样本个数 .
3）剩余使用寿命的评分函数 Score，定义为对预

测误差的指数惩罚，通过计算测试数据集中M个单

元的所有预测的总得分 Score［20］.Score 评价函数对     
提前预测的真实值比滞后预测的惩罚程度要小，

Score分数越低，预测效果越好 .在实际应用中，对核

心设备实现故障提前预测，可以及时规避严重生产

事故，因此 Score 函数更符合预测的实际需求 . 其定

义如式（7）所示：

Score =
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

∑
m = 1

M e( )rm - r∗
m13 - 1，rm ≥ r∗

m

∑
m = 1

M e( )rm - r∗
m10 - 1，rm < r∗

m

（7）

式中：m=1，2，3，…，M；rm表示机械设备的真实寿命；

r*
m表示模型的预测值 .

2   基于CNN-SLinformer的风电机组偏航故

障预测模型

为了降低多头自注意力在空间与时间复杂度的

开销，本文使用线性 Transformer，即 Linformer［21］，与

CNN 结合起来建立风电机组偏航预测模型 . 其中

Linformer 通过引入线性投影，将原始的缩放点积注

意力机制近似为多个更小规模的注意力计算，使这

些操作的组合形成原始注意力的低秩因数分解 .在
计算K和V时添加两个线性投影矩阵E i、F i，投影原

始的 (n × d ) 维键KW K
i 和值层VW V

i 分成 (k × d ) 维投

影键和值层，然后使用线性投影的缩放点积注意力

计算 (n × k ) 维下的映射矩阵
-P.

在计算 K和 V之前，使用多头自注意力机制对

输入序列X进行处理，得到动态的注意力权重A，A分
别与线性投影矩阵E i和F i相乘得到E'i 和F'i，解决原

始固定的线性投影矩阵E i和F i无法自适应捕捉输入

序列变化的问题 .通过引入动态的自注意力权重 A，
可以让E i和F i的计算过程受到输入数据的影响，充

分结合动态注意力机制和高效的线性投影的优势，

捕捉输入序列中的重要信息和依赖关系，让模型更

好地提取关键特征，提高模型的动态适应性 .其注意

力计算如式（8）所示：

图2   多头自注意力机制

Fig.2   Multi-head attention mechanism
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- -- -----head i = Attention (QW Q

i ，E'iKW K
i ，F'iVW V

i )
=

                  
softmax ( [ QW Q

i (E'iKW K
i )T

dk
]) ⋅

- -- ----- --P：n × k

F'iVW V
i （8）

通过对模型进行优化，SLinformer预测模型的时

间复杂度和空间复杂度都从 O（n2）降低为 O（n）. 空
间复杂度的降低，可让 SLinformer模型训练时所需的

参数量更少，从而使模型体积更小 .时间复杂度的降

低，使得 SLinformer在实际应用中可以提供更快的推

理速度［22］，这对于本文中需要实时预测故障的发生

时间非常有利；SLinformer模型不仅提升长序列预测

的性能，也降低了内存使用 . 这样做可以在保留       
Linformer 原有的线性时间复杂度 O（n）的基础上大

幅减少参数量，从而降低模型复杂度，提高模型的泛

化能力和鲁棒性 .
针对CNN神经网络全局信息的建模能力相对较

弱和 SLinformer 捕捉局部特征之间依赖关系不敏感

导致预测效果较差的问题，本文提出的基于 CNN-
SLinformer的风电机组偏航系统故障预测模型，能够

将CNN在局部特征提取方面的优势与 SLinformer在
全 局 信 息 建 模 方 面 的 优 势 结 合 起 来 . CNN-
SLinformer的模型结构如图3所示 .

使用CNN通过滑动窗口的方式在时间维度上对

输入数据进行扫描，通过卷积操作提取多个相邻时

刻的特征，局部特征被组合成一个新的一维特征图 .
这些新的一维特征图整合多个时刻和多个变量在时

间维度和空间维度的特征 .接着，这些一维特征图分

别被输入到 SLinformer 模型中提取通道注意力和时

间注意力，通道注意力用于学习不同通道之间的相

关性和重要性，而时间注意力则用于建模特征图中

不同时间步长之间的相关性 .SLinformer可以有效地

捕捉序列数据中的长距离依赖关系 .在通道注意力

和时间注意力之后，门控机制根据不同特征的重要

性，动态地调整它们的权重，更好地整合多个时刻和

多个变量的特征信息 . 最后，通过一个多层感知器

（MLP）模型，将融合后的特征映射到目标任务的输

出，即预测下次偏航故障的发生时间 .
如图 4 所示，风电机组偏航系统故障预测流程

主要由5个步骤组成：

步骤 1：根据输入 SCADA 数据故障样本标签采

用皮尔逊相关系数法进行特征选择，对特征选择完

成的数据做窗口滑动和归一化处理 .

步骤 2：将处理后的数据输入 CNN-SLinformer
模型预测，通过CNN对输入进行卷积核大小为 5、步
长为 3 的多层次特征提取 . 捕捉不同抽象级别的特

征，然后将提取的特征传入 SLinformer模型进行整合

建模预测，输出预测的故障发生时间 .
步骤 3：计算模型输出的预测时间与真实时间的

误差值，误差较大则反向传播重新开始训练 . 根据

MAE、RMSE 以及 Score 评价指标对 CNN-SLinformer
模型的整体预测性能进行评估 .

步骤 4：对相同故障风机的运行数据进行特征选

择、窗口滑动和归一化处理 .
步骤 5：导入处理完成的相同故障风机数据，输

入模型进行预测，然后对比不同机器学习模型的性

能与精确度 .
实验数据以“日”为单位进行时间步长切分，并

作为模型输入层的输入 .随后，一维卷积层在时间维

度上提取特征，生成输出张量 . 第三层 Lambda 层从

卷积层输出中提取三个通道的张量，并将每个通道

的张量应用于全连接层 .通过计算注意力权重，用于

对不同时间步的特征进行加权处理，以便模型更关

图3   CNN-SLinformer模型结构图

Fig.3   CNN-SLinformer model structure diagram
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注重要的时间步 .接着，拼接层将三个注意力权重张

量在第二个维度上进行拼接，随后重塑层将拼接层

输出的形状重新调整为三维 .将重塑层的输出与卷

积层的输出进行逐元素相乘，以更好地融合卷积层

的特征和注意力权重 .通过多头自注意力对元素相

乘层的输出进行计算，帮助模型自动学习输入数据

中的相关性和重要性 .然后，展平层将自注意力层的

输出展平为一维向量 .最后，通过全连接层逐渐减少

维度并进行特征转换，生成模型预测的结果 .
这样的模型结构能够充分利用卷积层提取的特

征和注意力权重，通过自注意力捕捉输入数据中的

相关性，并生成预测模型的结果 .CNN-SLinformer模
型涵盖了对时间步长特征的提取、注意力机制的应

用以及特征转换的操作，能够更好地理解输入数据

并实现预测 .

3   实验验证

3.1   数据来源

本文使用配置为 Inter I7 3.0 GHz CPU，16 GB 
RAM，GTX 1050 Ti GPU以及系统为Windows10 64位

操作系统的 PC，以 TensorFlow 为深度学习框架编制

Python 程序 . 采用西北某风电场记录的 2021 年 5 月

19 日至 2022 年 5 月 18 日连续 365 天的机组运行

SCADA数据作为原始训练数据集，该数据集能够覆

盖风机在不同运行状态下的特征，详细地记录了机

组的运行状态参数，包括时间、风速、总发电量、环

境温度、发电机转速、风向角、桨叶片角度、电流信

号等 57 项有效参量，采样间隔为 10 min，具体示例

见表 1.

3.2   数据处理与特征选择

原始数据包含了一些无效数据，如机组启停、空

值记录等 .为了得到好的模型预测效果，需对原始数

据进行预处理 .按照以下原则剔除无效数据：

1）发电机输出功率小于零的点；

2）风速小于切入风速，以及大于切出风速的点；

3）发电机转速小于零的点［23］.
剔除无效数据后，为了实现故障预测的目的，需

要根据风机运行状态跟踪表对 SCADA 数据进行标

记，在 SCADA 数据中增加状态列，根据运行状态跟

踪表对状态列进行打标，0 为正常运行数据，1 为偏

航系统故障数据 .然后使用 fillna方法将缺失值使用

图4   基于CNN-SLinformer的风电机组偏航系统故障预测流程图

Fig.4   Fault prediction flowchart for wind turbine yaw system based on CNN-SLinformer

表1   SCADA数据实例

Tab.1   SCADA data example

序号

1
2

︙
51 636

时间

2021-05-19 00：00：00
2021-05-19 00：10：00

︙
2022-05-18 08：50：00

风速m/s
5.38
6.18
︙

1.77

机舱位置

181.89
181.90

︙
342.8

…

…

…

…

无功用电量总计/（kW·h）
546 485
546 485

︙
769 811

无功发电量总计/（kW·h）
411 474
411 474

︙
742 571
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前一个非缺失值填充［24］.填充后，03号风机停机时段

如图 5 所示，其中 2021 年 8 月 11 日 0 时至 2021 年 8
月 14 日 16 时因断电维修未采集到 SCADA 数据，其

余时间段绿色表示正常运行，蓝色为其他故障导致

停机，红色为偏航故障导致停机 .

SCADA 系统采集的特征众多，而这些高维度特

征中存在着一些冗余和无关特征 .数据决定了模型

预测效果的上限，当模型输入维度超过某一界限时，

会对模型的预测效果产生一定的影响，降低模型运

算效率 .因此有必要对原始数据进行特征选择，提取

出对研究目标有用的数据信息［25］. 为了降低计算成

本、提高模型正确率，根据专家知识和现场运维人员

的经验，删除与偏航故障无关联的部分特征 .
对原始数据进行数据标记和人工特征选择

后， 数据特征包含 47项 .采用皮尔逊相关系数法进

行特征筛选，经过两次计算后得到与偏航系统故障

关联度较高的特征与相关性绝对值，如表 2 所示，

其中 1#桨叶片角度、2#桨叶片角度和 3#桨叶片角度

相关性绝对值相同，可任选其一 . 选取相关性绝对

值较大的总扭缆角度、机舱位置、齿轮箱油池温度、

无功用电量总计和 2#桨叶片角度五项特征，可以发

现所选特征中并非全部都与偏航系统运行状态有

直接关联，一些特征间接地影响着偏航系统的运行，

如果忽略这些特征，模型预测效果可能会出现一定

的偏差［26］.

图 6 为经过特征选择的总扭缆角度、机舱位置

和皮尔逊相关系数法选择的齿轮箱油池温度、2#桨

叶片角度和无功用电量总计五项特征按时间序列的

折线图 .如图 6（a）所示，总扭缆角度波动过大，说明

偏航系统无法有效地跟踪风向变化，可能导致偏航

故障发生；如图 6（b） 所示，机舱位置的变化直接反

映了偏航系统的工作状态，如果机舱位置波动较大，

说明偏航系统无法有效地稳定机舱方向或偏航系统

出现故障或磨损；如图 6（c）所示，齿轮箱油池温度的

异常变化可能导致偏航齿轮箱运行状态恶化，进而

影响整个风机的偏航性能；如图 6（d）所示，若桨叶片

角度发生大幅波动，则会影响风机的气动平衡，增加

偏航系统的负荷和工作难度；如图 6（e）所示，无功用

电量总计的异常变化也可以反映出偏航系统存在潜

在问题，当偏航系统出现故障时，若无法有效控制机

舱方向，则会导致风机气动性能下降，从而增加系统

的无功消耗 .综合分析这些特征的变化规律，不仅有

助于及时发现和诊断偏航故障，还可以为预防偏航

系统故障提供依据 .

图5   03号风机偏航故障停机图

Fig.5   Yaw fault shutdown diagram of wind turbine

表2   特征相关性分析

Tab.2   Feature correlation analysis

特征

总扭缆角度

机舱位置

齿轮箱油池温度

1#桨叶片角度

2#桨叶片角度

3#桨叶片角度

无功用电量总计

主轴转速

齿轮箱中间轴驱动端轴承温度

齿轮箱中间轴非驱动端轴承温度

有功发电量总计

︙
网侧频率

相关性绝对值

0.828
-0.741
0.722
0.535
0.535
0.535

-0.507
0.377

-0.312
0.304

-0.281
︙

0.003

                                  （a）总扭缆角度                                                         （b）机舱位置                                                      （c）齿轮箱油池温度
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3.3   实验结果及分析

采用 CNN-SLinformer 模型进行训练，实验参数

设置如表3所示 .

图 7 为 CNN-SLinformer 模型损失曲线图 . 损失

曲线展示了模型在训练过程中在训练集和验证集上

的损失表现 . 通过分析损失曲线，可以评估 CNN-
SLinformer模型的学习性能，并对其架构或超参数进

行必要的调整，以提高模型的有效性 .

观察图 8，在因故障停机前的运行过程中，CNN-
SLinformer模型可以提前预测出风机的故障时间，且

预测精度在稳步提升 . 对训练好的 CNN-SLinformer
模型进行测试，得到第 2次到第 14次的风电机组偏

航系统预计的故障发生时间，见表4.
从表 4可以计算本文所提模型预测的故障发生

时间与实际故障发生时间之差，平均相差 1.592 2 d.

从预测精度看，第 5次、第 8次和第 12次故障发生时

间预测结果较为精确，时间相差在 5小时以内，除去

第 6 次、第 10 次和第 14 次故障外，其余的预测差值

均在 24 小时之内 . 这对于检修计划的制订，适时开

展风机的检修，减少风电机组停机时间，增加风电场

效益具有一定的现实意义 .
3.4   不同模型的预测性能比较

为了验证本文所提出模型的性能优势，分别选

取 CNN-LSTM 模型、CNN-BiLSTM 模型以及 CNN-

图7   CNN-SLinformer模型损失曲线图

Fig.7   CNN-SLinformer Model Loss Curve

图8   CNN-SLinformer模型预测结果

Fig.8   CNN-SLinformer model prediction results

                                                                  （d）2#桨叶片角度                                                      （e）无功用电量总计

图6   不同特征的时间序列图

Fig.6   Time series plots of different features

表3   实验参数设置

Tab.3   Experimental parameter settings

超参数

Batch size
Learning rate

Epoch
激活函数

值

144
0.001
200

ReLU 表4   风电机组偏航系统故障发生时间预测分析

Tab.4   Prediction analysis of fault occurrence time of wind 
turbine yaw system

故障序号

2
3
4
5
6
7
8
9

10
11
12
13
14

预测时间/d
2.638 8

17.397 0
3.951 3

24.805 5
13.538 2
7.340 2

13.813 2
5.832 3

24.916 3
6.361 1

12.532 9
0.180 5

98.245 2

实际时间/d
3.000 4

18.013 8
4.323 8

24.909 3
23.944 4
7.642 4

14.0
5.625 0
27.625
6.673 7

12.506 9
0.526 5

103.460 0

预测误差/d
0.361 6
0.616 8
0.372 5
0.103 8

10.406 2
0.302 2
0.186 8

-0.207 3
2.708 7
0.312 6
-0.026
0.346 0
5.214 8
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Linformer 模型进行比较，选用的数据集同上 .其中，

激活函数选择ReLU，优化器选择Adam，迭代次数同

样设定为 200 次 .CNN-SLinformer 的参数设置与 3.3
小节中相同，4种模型的预测结果如图9所示 .

可以直观地看出，在四种预测模型中，基于

CNN-SLinformer预测模型的预测效果稳定且各预测

值均在实际值以下，可以实现提前预测 . 相比较而

言，虽然 CNN-Linformer 模型在前期 1 000 个样本点

的预测值与实际值走势比较接近，第 1 000个样本点

以后偏差要更大，前 600 个样本点可以实现对于偏

航故障的提前预测，在第 600 个样本点之后预测结

果在真实值上方，无法实现提前预测，而基于 CNN-
LSTM和CNN-BiLSTM模型的预测效果较差 .通过观

察细节图 9（b），在预测时间段内，CNN-LSTM模型在

训练初期的参数更新不稳定，使得模型无法快速收

敛到最优解，预测点估计值偏离实际剩余寿命值较

大 . 观察细节图 9（c），在预测时间段内，CNN-
SLinformer 模型的预测值在逐步靠近真实值，而

CNN-LSTM、CNN-BiLSTM 与 CNN-Linformer 模型的

预测值均高于真实值，且预测精度越来越低 .表 5列

出了四种预测模型的 MAE 值、RMSE 值和 Score 值，

可以更清楚地看出它们预测性能的差异 .

从MAE误差来看，四个模型由小到大的顺序为

CNN-SLinformer、CNN-Linformer、CNN-BiLSTM 和

CNN-LSTM，这说明采用先进的深度学习模型以及

对数据进行合适的预处理，有助于预测精度的提升 .
对于 Score 评价指标，CNN-SLinformer 模型得分最

低，根据提前预测比滞后预测的惩罚程度小的特性，

说明模型可以实现对故障的提前预测且精准度最

高 .从时间消耗来说，LSTM模型与BiLSTM模型涉及

大量的参数更新和矩阵操作，模型的计算复杂度更

高，而 SLinformer模型在训练和推理过程中可以利用

并行计算的优势提高计算效率 . 综合而言，CNN-
SLinformer模型相较于对比模型可以消耗更少的时间

预测出更准确的故障发生时间，证明了本文所提的

                                                            （b）                                                                                                 （c）
图9   模型预测结果对比

Fig.9   Comparison of model prediction results
表5   实验结果对比

Fig.5 Comparison of experimental results

模型

CNN-LSTM
CNN-BiLSTM

CNN-Linformer
CNN-SLinformer

MAE
14.307 7
12.158 5
12.010 5
10.098 8

RMSE
15.046 1
13.174 3
13.948 2
11.312 5

Score
2 731.96
2 799.99
1 769.08
144.50

时间消耗/s
318.9
526.9
183.0
64.8
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CNN-SLinformer预测模型的有效性和优越性 .
3.5   模型泛化性验证

为了验证本文所提出的模型在风机故障时间预

测的泛化性，选取风电场中同时段发生相同偏航故

障的风机进行预测，共选择 05 号、07 号、13 号和 17
号 4 台风机第一次发生故障前的数据进行预测，

CNN-SLinformer 的参数设置与 3.3 节相同，4 台风机

的预测结果如图10所示 .

在发生故障的 05号、13号风机上预测故障的发

生时间时，CNN-LSTM 模型和 CNN-BiLSTM 模型预

测数据均在距离故障发生时间之上，无法实现对于

故障的提前预测 . 在对 07 号、17 号风机预测时，

CNN-Linformer 模型与 CNN-BiLSTM 模型可实现部

分时间段的提前预测 . 在四台风机的预测过程中，

CNN-Linformer 预测值均在距离故障发生时间的下

方，可实现对于风机偏航故障的提前预测 .CNN-
LSTM 模型、CNN-Linformer 模型、CNN-BiLSTM 模型

预测过程中预测精度下降明显，CNN-SLinformer 模
型在离故障发生时间越近时，预测准确率越高 .05
号、07 号、13 号、17 号风机的最大预测误差分别是

0.725 d、0.292 d、0.538 d、1.214 d. 05 号与 13 号风机

在预测过程中波动较大，预测误差极大值出现在预

测的中间阶段；07 号与 17 号风机预测曲线较为平

稳，预测误差极大值出现在预测的初始阶段 .结合不

同风机、不同模型对于偏航故障发生时间的预测，进

一步证明本文所提CNN-SLinformer模型在偏航故障

发生时间预测中的精确性与适用性 .

4   结 论

本文针对风电机组偏航系统故障预测问题，提

出了一种基于CNN-SLinformer神经网络的故障时间

预测方法 .该方法结合了 CNN在局部特征提取方面

的优势，以及 SLinformer在全局建模和捕捉长期依赖

性方面的优势 .首先使用CNN对 SCADA数据在时间

维度上进行扫描和卷积操作，提取多个相邻时间步

的局部特征，然后将这些局部特征输入 SLinformer
中，通过自注意力机制学习特征之间的相关性和重

要性，捕捉长期依赖关系 .最后，整合多时间步和多

变量的特征信息，通过多层感知器输出下次偏航故

障的发生时间预测 .在中国西北某风电场的实验中，

该CNN-SLinformer模型在预测偏航系统故障发生时

间方面取得了非常好的效果，平均预测误差仅为

1.59 d，部分风机的预测时间甚至与实际发生时间相

差不到5 h.与其他主流方法相比，CNN-SLinformer在
预测精度、稳定性和计算效率方面都展现出优势，能

                                                  （a）05号风机预测结果                                                                         （b）07号风机预测结果

                                                   （c）13号风机预测结果                                                                          （d）17号风机预测结果

图10   其他风机预测结果图

Fig.10   Prediction results plot of other wind turbines
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够充分挖掘 SCADA数据中蕴含的时空相关信息，提

高风电机组故障预测的准确性和可靠性 .
在未来研究中，可以考虑结合先验知识或其他数

据源，进一步提高模型在小样本场景下的泛化能力；

还可以探索将该方法应用于其他类型新能源设备的

故障预测，期望在更广泛的应用场景中发挥作用 .
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