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摘 要：针对 SαS 分布噪声提出了一种基于分数低阶预处理与特征值调和平均检测相结

合的频谱感知算法，该算法以分数低阶预处理接收信号样本协方差矩阵的最大特征值与特征

值调和平均之差与最小特征值之比（DMHMM）作为感知判决量 . 该算法在预处理阶段通过分

数低阶操作降低 SαS 分布噪声非高斯特性的影响，在检测阶段利用极值特征值与特征值调和

平均设计检测判决量，检测过程避免了对噪声参数的依赖，适应范围广 . 在此基础上，基于

Wishart 矩阵特征值几何平均的矩理论，以及高维随机矩阵中最大和最小特征值渐近分布理

论，针对 DMHMM 频谱感知算法提出了一种有效的理论判决门限计算方法，在降低理论门限

计算复杂度的同时，提高了非渐近条件下 SαS 分布噪声中主用户信号检测结果的可靠性 .
Monte-Carlo仿真结果表明，所提 DMHMM 频谱感知算法可以获得比半盲 DMGM算法更为可靠

的检测判决结果，且在检测阶段无需 SαS分布噪声的相关参数；由于综合利用了分数低阶预处

理后取样协方差矩阵的极值特征值以及特征值调和平均信息，能够更好地反映主用户信号的

变化，使得新算法具有比MME和CHME算法更优的检测效果 .
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Abstract：A novel spectrum sensing algorithm is proposed for environments characterized by symmetric Alpha-
stable （SαS） noise， combining fractional low-order preprocessing with eigenvalue harmonic mean detection. The 
proposed algorithm employs the ratio of the difference between the maximum eigenvalue and the harmonic average of 
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all eigenvalues to the minimum eigenvalue （DMHMM） as the test statistic. These eigenvalues are calculated from the 
sample covariance matrix of the received signal， which is preprocessed using fractional lower-order techniques. This 
algorithm reduces the impact of the non-Gaussian characteristics of SαS noise through fractional low-order 
operations in the preprocessing stage； and in the detection stage， it uses extreme eigenvalues and eigenvalue 
harmonic mean to design test statistic. The detection process of the proposed algorithm does not depend on SαS noise 
parameters and has a wide range of adaptability. On this basis， based on the moment theory of geometric mean of 
Wishart matrix eigenvalues and the asymptotic distribution theory of maximum and minimum eigenvalues in high-
dimensional random matrices， an effective theoretical decision threshold calculation method is proposed for the 
proposed DMHMM algorithm. This method reduces the complexity of theoretical threshold calculation while 
improving the reliability of detection results of the primary user signal in SαS noise under non-asymptotic conditions. 
Monte Carlo simulation results show that the proposed DMHMM algorithm can obtain more reliable decision results 
than semi-blind DMGM algorithm， and does not require statistical parameters of SαS noise in the detection stage. 
Due to the comprehensive utilization of the extreme eigenvalues and the harmonic mean of all eigenvalues of the 
sampled covariance matrix after fractional low order preprocessing， the new algorithm can better reflect the changes 
in the primary user signal， resulting in high detection probabilities than the traditional MME and CHME algorithms.
  Key words：spectrum sensing； symmetric Alpha-stable （SαS） distribution noise； fractional lower-order mo⁃
ment； eigenvalue distribution； harmonic mean

认知无线电技术通过频谱感知动态地分配空闲

频段，可以实现频谱资源的有效利用，成为缓解频谱

稀缺问题的重要途径［1-4］.频谱感知作为认知无线电

的核心技术，其目标是在复杂电磁环境中准确检测

主用户信号的存在与否［5-6］. 在实际应用中，频谱感

知性能往往受到背景噪声的显著影响，尤其是在非

高斯噪声的情况下，这一问题尤为突出［7-11］.
高斯噪声在理论建模、实际应用以及数学处理

方面的便利性和广泛适用性等种种优良特性使其成

为频谱感知研究中最普遍的噪声模型 .然而在真实

的无线通信环境中，次级用户接收到的信号往往会

受到人为脉冲噪声、大气噪声、互干扰等非高斯噪声

的干扰，这些噪声通常表现出非高斯特性，呈现出脉

冲性和长尾分布的特点 .经典的高斯噪声模型在描

述这类噪声时往往显得力不从心，而对称 Alpha 稳
定（SαS）分布由于其灵活性和准确性，成为建模非高

斯噪声的理想选择［12-15］.SαS分布能够有效描述强脉

冲噪声环境，涵盖了高斯分布、柯西分布和莱维分布

等特例 . 尽管 SαS 分布在描述噪声特性方面具有独

特优势，但其带来的脉冲特性和无限方差特性也使

得传统基于高斯假设的频谱感知性能在非高斯噪声

环境下急剧下降［16］.

得益于高维随机矩阵理论的发展，基于特征值

的检测方法因其优异性能成为高斯噪声背景下一类

极为重要的检测方法，其中包括最大最小特征值之

比的MME算法、基于特征值反调和平均的CHME算

法［17-20］. 前者基于接收信号样本协方差矩阵极值特

征值构造感知判决量，后者基于所有特征值的信息

构造感知判决量，均能实现全盲检测 .鉴于特征值检

测方法的优良特性，为了应对非高斯噪声下频谱感

知的挑战，SαS分布噪声条件下基于特征值的频谱感

知方法的研究逐渐引起了研究者的关注 .这些方法

基于分数低阶预处理后的样本协方差矩阵特征值的

统计规律设计相应的感知判决规则，以实现 SαS 分

布噪声条件下授权无线信道被占用情况的有效检

测 .文献［21］在分数低阶处理基础上提出了一种针

对 SαS 分布噪声的最大和最小特征值之差的 DMM
检测算法 .该算法在检测过程中无须利用接收信号

和传输信道的统计信息，然而在检测过程中需要利

用噪声信息设置判决门限 .值得注意的是，在实际的

频谱感知应用场景中，由于噪声环境不确定性的影

响，次级用户在检测过程中难以获取 SαS 分布噪声

的精确参数信息［22］，因而限制了该算法的进一步应

用 . 因此，正如高斯分布噪声中的频谱感知问题一
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样，解决 SαS 分布噪声中频谱感知阶段的全盲检测

问题具有相当重要的实际应用价值 . 文献［23］将

MME 检测算法运用于 SαS 分布噪声的频谱感知问

题 .该算法利用最大特征值的极限分布理论，得到虚

警概率与判决门限的关系表达式 . 相较于 DMM 算

法，该算法能够实现 SαS 分布噪声场景中检测阶段

的全盲检测 .需要指出的是，DMM和MME两种算法

都只是简单运用分数低阶样本协方差矩阵的极值特

征值信息 .然而，极值特征值往往只是反映了数据矩

阵的某些重要特性，而可能对某些信号模式或噪声

模式敏感度不足，特别是在噪声比较强或者信号较

弱的情况下 .相反，利用所有特征值则可能提供信号

和噪声更全面的信息，使得感知算法更好地捕捉到

信号的变化特征，从而减少误检测的概率，由此提高

SαS分布噪声场景中频谱感知的可靠性和鲁棒性 .基
于这一考虑，文献［16］提出了一种基于最大特征值

与特征值几何平均之差的 DMGM 算法，其仿真结果

表明，该算法表现出比 DMM 和 MME 两种算法更好

的检测性能 .然而，一方面，该算法在计算判决门限

时只是简单地将特征值几何平均近似替换为噪声方

差，仿真结果表明这种近似处理在感知过程中容易

造成次级用户不可靠的感知判决结果；另一方面，由

于该算法在设置判决门限过程中需要已知 SαS分布

噪声的尺度参数和特征指数信息，未能实现次级用

户感知阶段的盲检测，其感知性能容易受到噪声不

确定现象的影响 .
尽管基于特征值的检测方法在高斯噪声感知场

景中取得了很好的检测效果，但其针对 SαS 分布噪

声场景中的频谱感知问题仍有待进一步研究和设

计 .有鉴于此，本文针对 SαS分布噪声感知问题提出

一种基于特征值调和平均的盲DMHMM频谱感知算

法，该算法将分数低阶预处理接收信号样本协方差

矩阵的最大特征值和特征值调和平均之差与最小特

征值之比作为判决指标，保证了检测阶段的盲感知

特性；在此基础上利用Wishart矩阵特征值几何平均

的矩分析结果，以及高维随机矩阵中最大和最小特

征值渐近分布理论，提出了一种有效的理论判决门

限计算方法，保证了 SαS 分布噪声条件下感知算法

判决结果的可靠性 .仿真结果表明，本文提出的基于

特征值调和平均的DMHMM频谱感知算法表现出比

MME 和 CHME 算法更好的检测性能，同时摆脱了

DMGM算法在检测阶段对 SαS分布噪声统计参数的

依赖且能获得更为可靠的检测判决结果 .

1   数学模型

1.1   频谱感知模型

将主用户信号不存在时的状态标记为 H0，主用

户信号存在时的状态标记为 H1.假定次级用户配备

M 根天线，在每个感知周期内对多天线接收信号采

样N次 .基于此，可以建立如下频谱感知模型： 
ì
í
î

H0：xm (n ) = wm (n )
H1：xm (n ) = s (n ) + wm (n ) （1）

式中：n ∈ {1，2，⋯，N}；m ∈ {1，2，⋯，M}；xm (n ) 表示

次级用户的第m根天线第 n时刻的采样信号；s (n ) 表
示经过无线信道传输后的接收主用户信号；wm (n ) 表
示 Alpha 稳定分布噪 声 . 不失一般性，假设 s (n ) 和
wm (n ) 相互统计独立 .
1.2   对称Alpha稳定分布噪声

Alpha 稳定分布噪声的概率密度函数有厚重的

拖尾，其概率密度函数和分布函数通常没有闭式形

式，其特征函数表示为：

φ ( t ) = exp ( j μt - γ|t|α(1 + jβsign ( t ) ω ( t，α ) ) )（2）
其中，

sign ( t ) =
ì

í

î

ïïïï

ïïïï

1， t > 0
0， t = 0

-1， t < 0
（3）

ω ( t，α ) =
ì

í

î

ï
ïï
ï

ï
ïï
ï

tan ( )απ
2 ， α ≠ 1

2
π log || t ， α = 1

（4）

式中：μ（-∞ < μ < +∞）表示概率密度函数的位置参

数，表征了分布的中心；γ（γ > 0）表示尺度参数，表

征 Alpha 稳 定 分 布 变 量 偏 离 均 值 的 程 度 ；α

（0 < α ≤ 2）表示特征指数，表征Alpha稳定分布拖尾

的厚重程度 .α值越大，Alpha稳定分布的拖尾越薄，

噪声分布的高斯性就越强，当 α = 2 时即为高斯分

布；β（-1 ≤ β ≤ 1）表示对称参数，表征 Alpha 稳定分

布噪声的偏斜程度 .当 β > 0时，为正向偏斜分布，分

布的重心整体往左偏；当 β < 0时，为负向偏斜分布，

分布的重心整体往右偏 .当 β = 0时，表示对称Alpha
稳定（SαS）分布 .特别地，当 μ = 0，γ = 1，β = 0时，表

示标准SαS分布 .
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2   基于特征值调和平均的稳健频谱感知算法

2.1   分数低阶预处理

注意到 SαS（0 < α < 2）分布噪声随机变量不存

在二阶矩，但 p阶分数低阶矩存在［15］：

E (| wm (n ) | p ) = C ( p，α) γ
p
α （5）

其中，0 < p < α/2，且

C ( p，α) =
2p + 1Γ ( )p + 1

2 Γ ( )-p
α

α π Γ ( )-p
2

（6）

式中：Γ(a ) = ∫0

∞
xa - 1e-xdx. 现有研究结果表明，分数

低阶处理可以有效降低 SαS分布噪声非高斯特性的

影响，为此引入接收信号预处理过程［16］：

x͂m (n ) = | xm (n ) | p - E (| wm (n ) | p ) （7）
不难得到在 H0状态下，预处理后的 SαS 分布噪

声样本方差可以表示为：

δ2 =
22p + 1Γ ( )2p + 1

2 Γ ( )-2p
α

α π Γ ( )-p γ- 2p
α

-

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç 2p + 1Γ ( )p + 1
2 Γ ( )-p

α

α π Γ ( )-p
2 γ- p

α

ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷

2

（8）

结合式（5）和式（7）可知，次级用户对接收信号

进行预处理需要已知噪声特征参数α和 γ.在参数未

知的情况下，在实际的信号处理过程中可以根据噪

声样本进行估计得到［15］.
当样本数量 N 趋近于无穷时，预处理后接收信

号的样本协方差矩阵 R͂x(N )近似等于预处理后接收

信号的统计协方差矩阵 R͂x，即有：

R͂x ≈ lim
N → ∞ R͂x(N ) = lim

N → ∞
1
N XX T （9）

其中，X表示预处理后的接收信号数据矩阵：

X =
æ

è

ç

ç

ç

ç

ç
çç
ç
ç

ç

ç

ç
ö

ø

÷

÷

÷

÷

÷
÷÷
÷
÷

÷

÷

÷
x͂1 (1) x͂1 (2) ⋯ x͂1 (N )
x͂2 (1) x͂2 (2) ⋯ x͂2 (N )

⋮ ⋮ ⋮
x͂M (1) x͂M (2) ⋯ x͂M (N )

（10）

分数低阶预处理可以有效降低 SαS分布噪声中

由概率密度函数厚重拖尾产生的“尖峰”或“野值”，

使得预处理后的 SαS 分布噪声近似服从均值为零、

方差为 δ2 高斯分布［16］.因此，当授权信道只存在 SαS

分布噪声时，R͂x(N )近似服从自由度为 N、协方差矩

阵 为 δ2 IM /N 的 中 心 Wishart 分 布 ，标 记 为

R͂x (N ) ∼ WM(N，δ2 IM /N ).
2.2   基于特征值调和平均的盲主用户信号检测

如前面分析所言，传统 SαS 分布噪声下 DMGM
检测方案在门限计算过程中需要已知预处理后噪声

方差信息 .相应地，结合式（8）可知，次级用户需要已

知SαS分布噪声特征参数α和γ.需要特别指出的是，

当这些参数未知时，估计误差将给门限的正确设置

带来偏差，从而影响次级用户感知判决结果的可靠

性 . 为此，本节提出一种在感知判决阶段无须依赖

SαS分布噪声特征参数的盲主用户信号检测算法 .
2.2.1   盲检测规则设计

注意到在样本数目充分大的情况下，当主用户

信号不存在时，有 R͂x ≈ δ2 IM /N，此时 R͂x的所有特征值

均为 δ2；另外，当主用户信号存在时，由于信道和主

用户信号的共同作用，经预处理后的接收信号统计

协方差矩阵将不再等于 δ2 IM /N，这意味着 R͂x 的相应

特征值不再全为 δ2.标记λi( R͂x )（1 ≤ i ≤ M）为 R͂x按降

序排列的特征值 .为了衡量特征值的变化，特引入特

征值调和平均变量：

λ̄HM( R͂x ) = M

∑
i = 1

M 1
λi( )R͂x

（11）

相对于其他平均数，调和平均对极端值的变化

比较敏感，因此能够更敏感地反映由主用户信号加

入引起的特征值变化情况 .另外，最大和最小特征值

也能很好地体现多天线接收信号协方差矩阵的变化

情况 .基于此，本文针对 SαS分布噪声设计了一种综

合极值特征值和调和平均优点的盲频谱感知判别

规则：

T = λmax( )R͂x - λ̄HM( )R͂x

λmin( )R͂x

⋛
H0

H1 0 （12）

式中：λmax( R͂x )和 λmin( R͂x )分别表示 R͂x 的最大特征值

和最小特征值 . 当 H0 状态为真时，由于 λmax( R͂x ) =
λ̄HM( R͂x ) = δ2，故有 T = 0 成立；反之当 H1 状态为真
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时，则有 λmax( R͂x ) ≥ λ̄HM( R͂x ) ≥ δ2 成立，显然有 T > 0
成立 .因此，指示量 T能够很好地反映主用户信号是

否出现 .在实际的应用中，需要用预处理后接收信号

的样本协方差矩阵 R͂x(N )近似代替 R͂x. 设 λi（1 ≤ i ≤
M）相应为 R͂x(N )按降序排列的特征值 . 由于 R͂x(N )
的随机性，感知判决规则相应变化为：

T = λmax - λ̄HM
λmin

⋛
H0

H1
η （13）

式中：η 表示感知判决门限，λmax = λ1，λmin = λM，λ̄HM

为 R͂x(N )特征值的调和平均 .
2.2.2   与相关算法比较分析

SαS分布噪声下的DMGM算法对应的感知判决

量为 TDMGM = λmax - λ̄GM，其中 λ̄GM 表示 R͂x(N )所有特

征值的几何平均 .与之对照，所提DMHMM算法中感

知判决量 T 所对应的分子为 λmax - λ̄HM. 由于 λ̄GM ≥
λ̄HM，故有 TDMGM > λmax - λ̄HM.这意味着当主用户信号

出现时，所提 DMHMM 算法能更容易捕捉到这种变

化，从而有利于次级用户做出正确的判决 .另外，当

存在噪声不确定性现象或者预处理后噪声方差 δ2 存

在估计误差时，DMGM算法对应的判决量 TDMGM 将受

到影响，从而使得算法对噪声方差不确定性影响不

具有鲁棒性 . 相反，所提 DMHMM 算法则通过引入

λmax - λ̄HM 与最小特征值 λmin 的商实现改进，当存在

噪声方差不确定性时，由于分子和分母进行了同样

的缩放从而使得判决量在H0状态下具有尺度不变特

性，进而避免了门限设置对噪声特征参数的依赖，具

备较显著的鲁棒感知特征 .
SαS分布噪声下的 MME 算法将最大特征值 λmax

与最小特征值λmin的商作为感知判决量，尽管避免了

在检测阶段判决门限设置对噪声方差的依赖，但其

并未充分利用其他特征值的信息参与检测，从而限

制了检测性能的提升 . 而结合式（13）可知，所提

DMHMM 算法的感知判决量可以等价表示为 T =
λmax /λmin - λ̄HM /λmin，注意到前半部分 λmax /λmin 即对应

MME算法的判决量，后半部分进一步利用了特征值

的调和平均信息参与感知判决过程 .
综上所述，本文所提 DMHMM 算法兼具 DMGM

算法和MME两种算法的优点，在具备鲁棒性的前提

下有望能进一步提升算法感知性能 .

2.2.3   判决门限计算

根据虚警概率的定义，所提 DMHMM 检测算法

的虚警概率可表示为：

P f = P ( λmax - λ̄HM
λmin

> η | H0 ) （14）
要获得 T | H0 的精确分布，涉及 Wishart随机矩

阵极值特征值和特征值调和平均的函数的累积分布

函数的求解，很难获得有意义的闭式解；进一步，感

知判决门限的求解还需要在此基础上对累积分布函

数进行求逆运算，因此精确分析判决门限变得十分

困难且不具有实际应用价值 .为此，本文提出一种实

用的近似门限分析方法 .由高维随机矩阵理论可知，

若 lim
N → ∞ M/N = c(0 < c < 1)，则在 H0 状态下有如下结

论成立［24］：

lim
N → ∞ λmin = δ2 (1 - c ) 2 （15）
由此可得：

P f ≈ P (λmax - λ̄HM > δ2(1 - c ) 2
η | H0 ) （16）

即有：

P f ≈ P (λmax > δ2(1 - c ) 2
η + λ̄HM| H0 ) （17）

注意到如下不等式关系恒成立：

λ̄GM ≥ λ̄HM ≥ λmin （18）
式中：λ̄GM = (det ( R͂x(N ) ) ) 1/M

表示 R͂x(N )所有特征值

的几何平均，这里 det ( ⋅ )表示矩阵的行列式运算 .
若定义：

P f_GM = P (λmax > δ2(1 - c ) 2
η + λ̄GM| H0 )（19）

P f_MIN = P (λmax > δ2(1 - c ) 2
η + λmin| H0 )（20）

结合式（18）~式（20）有：

P f_MIN ≥ P f ≥ P f_GM （21）
故给定相同的目标虚警概率时，经由式（17）、 

式（19）和式（20）计算得到的判决门限 ηHM、ηGM 和

ηMIN存在如下关系：

ηMIN ≥ ηHM ≥ ηGM （22）
注意到当N → ∞时有：

lim
N → ∞ ηMIN = lim

N → ∞ ηHM = lim
N → ∞ ηGM （23）

因此当给定目标虚警概率 PFA 计算得到 ηGM 和

ηMIN之后，所提DMHMM算法对应的判决门限可以表
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示为：

ηHM = θηGM + (1 - ϑ )ηMIN （24）
式中：0 ≤ θ ≤ 1.特别地，当样本数量N充分大时可以

取 θ = 0.5.接下来，利用式（19）和式（20）分别计算给

定目标虚警概率PFA条件下对应的门限ηGM和ηMIN.
由随机矩阵理论可知，若 A ∼ WM(N，Ξ )，则

det (A)的 r阶矩为［25］：

E (det (A) ) r =

(det (Ξ ) ) r ∏
i = 1

M 2rΓ ( )1
2 ( )N - i + 1 + r

∏
i = 1

M Γ ( )1
2 ( )N - i + 1

（25）

其中，E (X )表示随机变量X的期望 .由此可得：

E (det ( R͂x(N ) ) ) | H0 = σ2M∏
i = 1

M ( )N - i + 1
N （26）

Var (det ( R͂x(N ) ) ) | H0 =
σ4M∏

i = 1

M ( )N - i + 1
N ( )∏

k = 1

M ( )N - k + 3
N -∏

k = 1

M ( )N - k + 1
N

（27）
其中，Var (X )表示随机变量X的方差 .由切比雪夫不

等式可知，对于任意正数ε有下列不等式成立：

lim
N → ∞ P (|| det ( R͂x(N ) ) - E (det ( R͂x(N ) ) ) || ≥ ε | H0 ) ≤
Var ( )det ( )R͂x( )N

ε2 （28）
因此有：

lim
N → ∞ P (|| det ( R͂x(N ) ) - E (det ( R͂x(N ) ) ) || ≥

ε | H0 ) = 0 （29）
即 det ( R͂x(N ) )依概率收敛于E (det ( R͂x(N ) ) ).注

意到 λ̄GM = (det ( R͂x(N ) ) ) 1/M
，由概率理论可知 λ̄GM 则

依概率收敛于(E (det ( R͂x(N ) ) ) ) 1/M.因此，结合式（19）
可得如下近似结果：

PFA ≈ P (λmax > δ2(1 - c ) 2
ηGM +

(E (det ( R͂x(N ) ) ) ) 1/M
| H0 ) （30）

上式可以等价地表示为：

PFA ≈ P ( δ2 λmax( )C ( )N
N >

)δ2( )1 - c
2
ηGM + ( )E ( )det ( )R͂x( )N

1/M
| H0

（31）

定义C (N ) = NR͂x (N ) /δ2，且标记

a = ( N - 1 + M ) 2
（32）

b = ( N - 1 + M ) ( 1
N - 1 + 1

M )
1
3

（33）
由高维随机矩阵理论可知，若 lim

N → ∞ M/N = c(0 <
c < 1)，则 [ λmax( )C ( )N - a ] /b 依概率 1 收敛于 1、阶
Tracy - Widom分布 .因此有：

PFA ≈ P ( λmax (C (N ) ) - a
b >

ö

ø

÷

÷

÷
÷÷
÷
÷

÷N ( )1 - c
2
ηGM + Nδ-2( )E ( )det ( )R͂x( )N

1/M - a

b | H0

（34）
即：

PFA ≈ 1 -

F

æ

è

ç

ç

ç
çç
ç
ç

ç

ç

ç
ö

ø

÷

÷

÷
÷
÷÷
÷

÷

÷

÷N ( )1 - c
2
ηGM + N

δ2 ( )E ( )det ( )R͂x( )N
1/M - a

b | H0

（35）
式中：F ( ⋅ )表示 1 阶 Tracy - Widom 分布的累积分

布函数 .结合式（26）可得：

ηGM =
bF -11 (1 - PFA ) + a - N é

ë
êêêê

ù

û
úúúú∏

i = 1

M ( )N - i + 1
N

1/M

N ( )1 - M
N

2

（36）
其中，F1 -1 ( t ) 表示 1阶Tracy-Widom累积分布函数的

逆函数 .
接下来计算给定目标虚警概率 PFA 条件下对应

的判决门限ηMIN.联立式（15）和式（20）可得：

PFA ≈ P (λmax > δ2(1 - c ) 2
ηMIN +

δ2(1 - c ) 2
| H0 ) （37）

可以等价表示为：
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PFA ≈
P ( )δ2 λmax( )C ( )N

N > δ2( )1 - c
2
ηMIN + δ2( )1 - c

2
| H0

（38）
由此可得：

PFA ≈ 1 -

F
æ

è

ç

ç
ç
çç
ç
ç

ç
ö

ø

÷

÷
÷
÷÷
÷
÷

÷N ( )1 - c
2
ηMIN + N ( )1 - c

2 - a

b

（39）
因此有：

ηMIN = bF -11 ( )1 - PFA + a

N ( )1 - M
N

2 - 1 （40）

将式（36）和式（40）代入式（24）即可得到所提

DMHMM算法判决门限ηHM的表达式 .
2.2.4   算法流程

综合上述分析，所提 SαS 分布噪声下 DMHMM
算法的流程如下：

步骤 1：根据式（5）和式（7）对次级用户多天线接

收信号进行分数低阶预处理；

步骤 2： 根据式（9）计算预处理后接收信号的样

本协方差矩阵 R͂x(N )；
步骤 3：对 R͂x(N )进行特征值分解，获得其最大

和最小特征值，以及根据式（11）计算特征值的调和

平均 λ̄HM.并由此根据式（13）计算感知判决量；

步骤 4：根据给定的目标虚警概率 PFA，联立         
 式（24）、式（36）、式（40）计算判决门限ηHM；

步骤 5：当T ≥ ηHM 时，则授权信道存在主用户信

号，不能被次级用户使用；当T < ηHM 时，则授权信道

只存在SαS分布噪声，能被次级用户使用 .
从算法流程可以看出，所提 DMHMM 算法包含

分数低阶预处理和矩阵特征值分解过程，因而与SαS

分布噪声下基于特征值的DMGM、CHME、MME算法

具有相同阶数的计算复杂度 .其中，分数低阶预处理

主要包括信号的分数低阶运算和预处理后信号样本

协方差矩阵的计算，前者包含MN次 p阶幂运算和减

法运算，后者计算量为 O (NM 2 )；与此同时，所提

DMHMM算法涉及的信号样本矩阵特征值分解过程

的计算量为O ( M 3 ).

3   算法仿真与分析

仿真过程设定主用户信号为零均值的高斯信

号，多天线信号采用指数相关模型，噪声为标准 SαS
分布 .所有结果经由 5 000次Monte Carlo仿真实验得

到 .由于Alpha稳定分布噪声不存在二阶及高阶统计

量，因此引入广义信噪比的定义［16］：

GSNR = 10log10( δ2s
γ ) （41）

其中，δ2
s 为接收主用户信号的平均功率 .

3.1   理论门限有效性分析

图 1和图 2分别展示了当α =1.8、p = 0.3、N =90、
M = 10、PFA = 0.1时，四种算法的实际虚警概率和检

测概率随着广义信噪比 GSNR 变化的对比曲线 . 其
中，为验证本文所提门限计算方法的有效性，图中分

别展示了 θ分别取 1、0和 0.5时所提DMHMM算法的

性能曲线 .由式（24）可知，θ取 1和 0时的判决门限分

别对应于 ηGM 和 ηMIN. 对照图 1 可知，此时所提

DMHMM算法相应地产生了偏高和偏低的实际虚警

概率值，而通过设置 θ = 0.5来融合两种门限值则能

设置正确的判决门限，此时对应的实际虚警概率与

目标虚警概率值吻合得很好，表明此时具有可靠的

感知判决结果 .这恰好证明了前面理论分析的正确

性以及所提门限计算方法的有效性 . 另一方面，由 
图 1 的仿真结果可以看出，由于理论门限设置的偏

差，SαS分布噪声下传统的DMGM、CHME和MME算

法产生的实际虚警概率与目标虚警概率相去甚远，

特别是 CHME 和 DMGM 两种算法，在不同广义信噪

比条件下，其对应的最低实际虚警概率分别达到了

38.22%和34.24%；MME算法的最低实际虚警概率也

达到了 15.84%.这表明这些方法对应的理论门限比

正确的门限值偏低，从而导致如图 2 所示的这些算

法产生虚高的检测概率，即产生了不可靠的判决结

果 .其主要原因在于，这些算法理论门限的推导基于

天线数目和样本数量都趋于无穷大这一假定，而在

实际应用中这一条件通常难以满足；另一个可能的

原因在于，在推导门限过程中这些算法均假定噪声

为理想高斯模型，而分数低阶预处理并不一定能达

到理想的处理效果并由此带来一定的误差 .
3.2   与其他经典盲检测算法的性能对比分析

注意到DMGM算法在检测阶段需要已知 SαS分
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布噪声特征参数，故其实际上属于半盲检测算法 .而
DMHMM、CHME 以及 MME 算法在检测阶段不依赖

于噪声特征参数， 故属于全盲检测算法 . 全盲检测

具有更加广泛的应用场景，故接下来全面比较

DMHMM、CHME、MME 三种算法在 SαS 分布噪声下

的感知性能 . 由上面的仿真可知，CHME 和 MME 算

法的实际虚警概率均与目标值有较大差别，故为公

平比较三种算法的性能，现均用 Monte Carlo 方法获

得算法准确的判决门限，在此基础上进行感知性能

的比较 .
图 3展示了当 α =1.8，p =0.3，N =300，M = 5时三

种算法的检测概率和实际虚警概率随广义信噪比的

变化曲线 .由仿真结果可知，DMHMM算法感知性能

一致优于 MME 和 CHME 算法 . 例如，当 GSNR = 1 dB
时，DMHMM 算法与 MME 和 CHME 算法相比，检测

概率分别提升了 6.86百分点和 29.42百分点 .其原因

在于，相较于 MME 算法，DMHMM 算法除了利用极

限特征值信息之外，还使用了其他特征值的信息，因

而能够更好地反映主用户信号的变化情况，从而提

升算法的检测性能 .另外，尽管CHME算法也利用了

所有特征值信息，但非高斯噪声中的长尾特性会显

著影响特征值的反调和平均值，限制了该算法检测

性能的进一步提升 .

图4和图5分别展示了不同天线数目和虚警概率

对算法检测概率的影响 . 其中，图 4 给出了 GSNR =
1dB、α = 1.8、 p = 0.3、N = 300、PFA = 0.1时，上述三种

算法对应的仿真结果 .结果表明，所提DMHMM算法

的检测性能明显优于MME和CHME算法 .随着次级

用户配置天线数目增加，DMHMM 和 MME算法的检

测性能有明显提升，CHME算法性能则提升较慢 .其
原因在于，随着天线数目的增加，所提DMHMM算法

能够更加充分地利用多天线接收信号的相关信息，

从而表现出更为明显的优势 .图 5给出了M = 5时三

种算法的工作特性曲线，其结果表明，随着目标虚 
警概率的增加，三种检测算法的检测概率均有明显

增加，但本文所提 DMHMM 算法的感知性能提升

最快 .
为了探究不同特征指数 α 和不同分数阶次 p 对

三种算法感知性能的影响，图 6 和图 7 给出了当

GSNR = 2 dB、M=5、N=300 时，不同算法的仿真对比

情况 .图 6为 p = 0.3时三种算法感知性能在不同特征

指数α下的变化曲线，其结果表明，三种算法的检测

图1   不同算法实际虚警概率随广义信噪比变化对比曲线

Fig.1   Comparison curves of actual false-alarm probabilities of 
different algorithms when GSNR changes

图2   不同算法检测概率随广义信噪比变化对比曲线

Fig.2   Comparison curves of detection probabilities of different 
algorithms when GSNR changes

图3   检测概率和实际虚警概率随广义信噪比变化对比曲线

Fig.3   Comparison curves of detection probabilities and actual 
false-alarm probabilities when GSNR changes
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性能都随着特征指数α的增大而提升，原因在于α越

大，噪声的高斯性越强，更有利于感知判决，检测性

能越好 .当特征指数α ≤ 1.4时，三种算法的检测性能

相差不大，其原因在于，此时 SαS分布噪声的非高斯

性很强，相应的预处理不能很好地抑制 SαS 分布噪

声的脉冲特性，使得算法的检测概率较低；而当特征

指数 α > 1.4时，SαS分布噪声的非高斯性变弱，此时

预处理操作能够很好地削弱 SαS分布噪声的脉冲特

性，从而有助于提升三种算法的检测性能 . 与此同

时，通过固定α = 1.4，图 7的仿真结果表明三种算法

的检测性能均随着 p的增大而降低；当 p ≥ 0.3时，三

种算法的感知性能变得基本相同 .其原因在于，预处

理过程中 p越小，对非高斯性噪声的预处理效果越明

显，算法感知性能越好；当 p达到 0.3以后，预处理的

效果越来越不明显，使得三种算法感知性能相当 .从
仿真结果可以看出，本文所提 DMHMM 算法在上述

两种情况下均表现出最佳的检测性能 .

3.3   参数对算法性能影响分析

图 8 和图 9 分别展示了所提 DMHMM 算法检测

概率在不同特征指数 α 和不同分数阶次 p下随广义

信噪比变化曲线 .仿真过程中设置N = 300，M = 5.图
8的结果表明，所提DMHMM算法的检测概率随着特

征指数 α 的增加而增加，此时的预处理效果对非高

斯性强的噪声表现得更为明显；同时特征指数 α 越

大，SαS分布噪声的非高斯性越弱，噪声分布越接近

高斯噪声，越有利于判决，检测性能越好 . 图 9 的结

果表明，所提 DMHMM 算法的检测概率随着分数阶

次 p 的减小而增大，p 越小，分数低阶预处理对非高

斯性噪声的处理效果越明显，DMHMM 算法表现出

更优的检测性能 .

图5   工作特性曲线

Fig. 5   Operating characteristic curves

图6   检测概率随特征指数的变化对比曲线

Fig. 6   Comparison curves of detection probabilities when the 
characteristic exponent changes

图7   检测概率随分数阶次的变化曲线

Fig. 7   Comparison curves of detection probabilities when the 
fractional order changes

图4   检测概率随天线数目变化对比曲线

Fig.4   Comparison curves of detection probabilities when the 
number of antennas changes
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4   结 论

1）针对 SαS分布噪声提出了一种基于分数低阶

预处理与特征值调和平均检测相结合的盲DMHMM
频谱感知算法 .该算法在预处理阶段通过分数低阶

运算降低 SαS 分布噪声非高斯特性的影响，在检测

阶段利用极值特征值与特征值调和平均设计检测判

决量，检测过程无须依赖 SαS分布噪声特征参数，适

应范围广 .
2）基于Wishart矩阵特征值几何平均的矩理论，

以及高维随机矩阵中最大和最小特征值的渐近分布

理论，针对 DMHMM 频谱感知算法提出了一种有效

的理论判决门限计算方法 .该方法在降低门限计算

复杂度的同时，提高了非渐近条件下 SαS 分布噪声

中主用户信号检测结果的可靠性 .
3）仿真结果表明，所提 DMHMM 算法可以获得

比半盲 DMGM 算法更为可靠的检测判决结果，且在

检测阶段无需 SαS 分布噪声相关参数；由于同时利

用了分数低阶预处理后取样协方差矩阵的极值特征

值，以及所有特征值的调和平均信息，能够更好地反

映主用户信号的变化，新算法具有比 MME和 CHME
算法更优的检测效果 .
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