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摘 要：针对可重构智能表面辅助无线通信系统进行级联信道估计时存在导频开销大、自

适应能力差等问题，提出一种结合改进鲸鱼优化算法的双结构稀疏分段弱正交匹配追踪算法 .
该算法首先采用自适应门限分段弱正交匹配追踪算法选择多个强相关性的原子来构成原子

支撑集，并通过改进鲸鱼优化算法优化原子门限阈值，使其能够根据无线信道的变化动态调

整，有效提取原子支撑集，提高信道估计精度，降低算法运行时间 .仿真结果表明，相较于传统

的级联信道估计方案，本文所提方案在归一化均方根误差方面表现出较好的性能，能以更小

的导频开销获得更好的信道精度，且在不同的信道条件下具有更好的自适应性和鲁棒性 .
关键词：信道估计；可重构智能表面；分段弱正交匹配追踪；鲸鱼优化算法；归一化均方根
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           Improved Whale Optimization Algorithm Assisted RIS Cascade       
Channel Estimation
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Abstract：To address the challenges of excessive pilot overhead and limited adaptability in cascade channel 
estimation for reconfigurable intelligent surface （RIS） assisted wireless communication systems，this paper proposes 
an improved whale optimization algorithm integrated with a dual-structure sparse stagewise weak orthogonal 
matching pursuit algorithm （IWOA-DS-SWOMP）. The framework employs an adaptive threshold-controlled 
SWOMP mechanism to iteratively select multiple highly correlated atoms for constructing atomic support sets， while 
the atomic selection threshold via IWOA is dynamically optimized to adapt to real-time channel variations. This dual 
optimization strategy enhances atomic support set extraction accuracy， improves channel estimation precision， and 
reduces algorithm runtime. Simulation results demonstrate that the proposed scheme achieves superior normalized 
mean square error （NMSE） performance compared to conventional RIS cascade channel estimation methods， 
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attaining higher channel estimation accuracy with reduced pilot overhead while exhibiting enhanced adaptability and 
robustness under diverse channel conditions.
  Key words：channel estimation；reconfigurable intelligent surface；stagewise weak orthogonal matching pursuit；
whale optimization algorithm；normalized mean square error

随着移动通信和互联网技术的进步， 结合 6G、

物联网、人工智能等新兴技术， 电子消费行业和智

能电子产品正在加速发展 . 智能业务依赖于通信网

络， 但日益增长的需求和复杂的场景对网络提出了

巨大挑战 . 作为无线通信环境智能化的关键技术， 
可重构智能表面（reconfigurable intelligent surface， 
RIS）引起广泛关注［1］. RIS由大量可独立控制的无源

反射元件组成， 能够调节入射信号的振幅和相位， 
从而重塑无线电磁环境［2］. 将 RIS 与毫米波、大规模

多 输 入 多 输 出（multiple-input multiple-output， 
MIMO）等技术结合， 可低功耗实现高频谱效率和广

覆盖， 成为下一代通信系统的关键解决方案［3-4］. 然
而， RIS的引入增加了信道矩阵的维度， 并需要在基

站（base station， BS）或用户设备（user equipment， 
UE）上进行 BS-RIS-UE 链路的级联信道估计［5］. 这
不仅增加了信道估计中的导频开销和处理复杂度， 
也为获取精确的信道状态信息（channel state infor⁃
mation， CSI）带来了困难 .

信道估计是无线通信系统中一个至关重要的环

节，准确的CSI是确保系统可靠性和高效性的基础［6］.
传统的信道估计方法，如最小二乘（least squares， 
LS）和最小均方误差（minimum mean square error， 
MMSE）方法， 由于其复杂度低、实现简单，被广泛用

于RIS辅助通信系统中的信道估计［7-8］.文献［9］提出

了基于 LS 和 MMSE 的 RIS 信道估计方法，并通过实

验验证了其在低复杂度时实现的有效性 .然而，这类

方法的主要不足在于它们需要大量的导频信号，其

数量必须至少与信道参数的数量相等，这在大规模

RIS系统中会导致频谱效率低下，增加了通信系统的

开销 .
深度学习（deep learning， DL）方法因其强大的

非线性映射能力，近年来在信道估计领域取得了一

定的成果［10］.文献［11］提出了一种基于 DL 的 RIS信

道估计方法，通过训练深度神经网络来学习从导频

信号到CSI的映射关系 .尽管这种方法在估计精度上

表现出色， 但其缺点也很明显 . 首先， DL 模型的训

练需要大量数据和计算资源；其次， 训练好的模型

在面对新的环境或配置时， 泛化能力较差， 限制了

其实用性［12-13］.
为了解决上述问题，压缩感知（compressed sens⁃

ing， CS）技术因其能够有效地利用信号的稀疏性， 
减少所需的导频开销，而在 RIS 信道估计中展现出

巨大潜力［14］.CS 理论表明，通过设计适当的测量矩

阵，可以在远少于传统方法所需导频数量的情况下， 
重建稀疏信号［15］.结合 RIS毫米波信道的稀疏特性， 
CS 方法为信道估计提供了一种高效且低复杂度的

解决方案 .文献［16］提出一种基于三步正交匹配追

踪算法，通过扩大训练的样本数量来克服噪声影响， 
来降低RIS通信系统的导频开销；文献［17］针对RIS
辅助多用户 MIMO 系统， 发现 BS和 RIS之间有共同

信道，所有用户的级联信道矩阵具有共同的行-列-
块稀疏结构，基于此提出行结构稀疏的正交匹配追

踪算法；文献［18］为了进一步降低导频开销，利用角

域级联信道的双结构稀疏性，提出基于双结构的正

交匹配追踪算法（dual structure-orthogonal matching 
pursuit， DS-OMP）， 该算法只估计非零元素的位置， 
减少了冗余的估计开销；此外，文献［19］提出的分段

弱 正 交 匹 配 追 踪 算 法（stagewise weak orthogonal 
matching pursuit， SWOMP）可以在稀疏性等先验知

识未知的情况下重构信道状态信息，在选择原子时

不仅仅只选择相关性最强的原子，而是选择多个相

关性强的原子 .然而原子选择阈值是基于经验来进

行人为设置的，因此对于不同场景可能出现不稳定

的重构性能 .文献［20］提出基于正交频分复用系统

信道估计的鲸鱼优化算法（whale optimization algo⁃
rithm， WOA），使用WOA搜索最佳信道统计特性 . 在
估计精度、导频开销和自适应性之间进行协调实现， 
也是RIS信道估计的关键挑战之一 .

现有 DS-OMP 算法依赖信道稀疏度的先验知

识， 但在实际场景中， 信道的稀疏特性往往是未知

的， 导致其适用性受限 . 为此， 提出 DS-SWOMP
（dual structure-stagewise weak orthogonal matching 
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pursuit）算法， 通过融合 SWOMP 算法的原子选择机

制， 实现无稀疏先验约束的信道估计 . 同时， 针对

DS-SWOMP 中固定原子阈值导致场景适应性差以

及WOA收敛速度慢、全局搜索能力不足以及计算冗

余严重等问题， 提出基于改进鲸鱼优化算法（im⁃
proved whale optimization algorithm， IWOA）的自适应

信道估计方案， 实现参数动态优化与计算效率的联

合提升 .

1   RIS辅助通信系统

图 1展示了RIS辅助无线通信系统模型 . 从用户

到 BS有两种信道，一个是视距信道， 另一个是级联

信道，级联信道通过 RIS 将入射信号反射到期望的

方向 .假设BS由M=M1×M2个天线组成并均匀分布在

一个平面阵列中，M1表示水平方向上的天线数量， 
M2表示垂直方向上的天线数量 .同样地，RIS包括N=
N1×N2个反射单元，N1和N2分别表示水平和垂直方向

上的元件数量 . 此外， 配备有单个天线的 k个 (k =
1，2，…，K )用户随机分布在环境中 .

RIS 到 BS 的信道表示为 G ∈ CM × N，第 k个用户

到 RIS的信道用 h r，k ∈ CN × 1 表示 .在 RIS辅助通信系

统中，BS 与用户之间通过毫米波进行通信，而视距

信道hd 容易被密集的建筑物或者阻碍物阻挡 .因此，

级联信道的获取对于高效的通信是十分有必要的 .
假设 BS 和 UE 之间的视距信道是已知的 . 针对

上行链路的级联信道估计问题， 所有用户将通过

RIS同时向 BS发送导频符号 . 根据正交导频传输策

略， 所有用户在Q个时隙内向BS发送导频符号， 其
中导频符号对于发送端和接收端均是已知的 . 具体

而言，xk，q表示在第 q个 (q = 1，2，…，Q)时隙中第 k个

用户发送的导频符号 . 在去除视距信道 hd 的影响

后， BS 从第 k个用户接收到的有效信号 yk，q ∈ ℂM × 1

可以表示为：

yk，q = G diag ( )θq h r，k xk，q + wk，q = 
G diag ( )h r，k θq xk，q + wk，q （1）

式中：θq = [θq，1，…，θq，N ]
Τ ∈ CN × 1 是 RIS 处的反射向

量；θq，n表示第 q个时隙中第 n个（n=1，…，N）RIS 单

元的反射系数；wk，q~CN (0，IM )表示接收到噪声信

号， 服从循环对称复高斯分布 .
1.1   信道模型

级联信道由 RIS 构建的 h r，k -RIS -G信道构成， 
信道模型均采用 Saleh-Valenzuela 毫米波信道模型 . 
将信道G表示为［21］：

G = MN
LG

∑
l = 1

LG

αG
l1b (ϑGr

l1，ψ
Gr
l1 )a (ϑGt

l1，ψ
Gt
l1 ) T

（2）
式中：LG 表示 RIS 和 BS 之间的路径数量；αG

l1（| αG
l1 | =

10-3d-2.2BR ）表示第 l1 条路径的路径损耗的复增益；dBR
表示 BS 与 RIS 之间的距离；ϑGr

l1 和 ϑGt
l1 分别是 BS 和

RIS 处的第 l1 条路径的方位角； ψGr
l1 和 ψG t

l1 分别是 BS
和 RIS处的第 l1 条路径的仰角 . 同样地， 第 k个用户

和RIS之间的信道h r，k表示为［21］：

h r，k = N
L r，k

∑
l2 = 1

Lr，k

α r，k
l2 a (ϑ r，k

l2 ，ψ
r，k
l2 ) （3）

L r，k 表示第 k个用户与 RIS 之间的路径数； α r，k
l2

（| α r，k
l2 | = 10-3d-2.8RU）表示第 l2 条路径的路径损耗的复增

益； dRU 表示 RIS 与用户之间的距离；ϑ r，k
l2 和 ψ r，k

l2 分别

表示第 l2 条路径在 RIS 处的方位角和仰角； b (ϑ，ψ )
以及 a (ϑ，ψ ) 分别表示与 BS 和 RIS 相关的归一化阵

列响应矢量， 对于典型的均匀平面阵列， a (ϑ，ψ ) 可
以表示为：

a (ϑ，ψ ) = ah ⊗ av （4）
式中：⊗表示Kronecker内积， ah是水平响应矢量， 可
以表示为：

ah = 1
N1

[e-j2πd sin ( )ϑ cos ( )ψ n1 /λ ] （5）
同样地， av是垂直响应矢量， 可以表示为：

av = 1
N2

[e-j2πd sin ( )ψ n2 /λ ] （6）
式中：λ为载波波长；d为天线间距， 通常情况下满足

d = λ/2；n1 = [ 0，1，⋯，N1 - 1 ]；n2 = [ 0，1，⋯，N2 - 1 ].

图1   RIS辅助无线通信系统模型

Fig.1   RIS auxiliary wireless communication system model
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第 k个用户的级联信道可以进一步在虚拟角域

进行表示， 将级联信道Hk分解为：

Hk = UM H͂kU T
N （7）

式中：H͂k ∈ CM × N 表示角域级联信道；UM ∈ CM × M 和

UN ∈ CN × N分别是 BS 和 RIS 处的字典酉矩阵 . UM可

以通过以下方式进行计算［22］：

UM = lMh ⊗ lMv （8）
式中：lMh ∈ CM1 × M1、lMv ∈ CM2 × M2 分别是BS的水平和垂

直变换矩阵， lMh可以表示为：

lMh = é

ë
ê
êê
êah(0)，ah( 1

M1 )，…，ah(M1 - 1
M1 )ùûúúúú （9）

lMv可以表示为：

lMv = é

ë
ê
êê
êav(0)，av( 1

M2 )，…，av(M2 - 1
M2 )ùûúúúú （10）

同样地， UN可以表示为：

UN = lNh ⊗ lNv （11）
式中：lNh ∈ CN1 × N1、lNv ∈ CN2 × N2 分别为RIS的水平和垂

直变换矩阵 .
1.2   问题求解

根据级联信道Hk ≜ Gdiag (h r，k )， 可以将式（1）改

写成：

yk，q = Hkθqxk，q + wk，q （12）
经过Q个导频传输时隙后，通过假设 xk，q = 1 获

得 测 量 矩 阵 Yk = [ yk，1，⋅ ⋅ ⋅，yk，Q ] ∈ CM × Q，可 以 表

示为：

Yk = HkΘ + Wk （13）
式中：Θ = [θ1，⋅ ⋅ ⋅，θQ ]；Wk = [wk，1，⋅ ⋅ ⋅，wk，Q ].将式（7）
代入式（13）中可得：

Yk = UM H͂kU T
NΘ + Wk （14）

在实际的通信环境中， BS和 RIS一般架设在高

层建筑物上， 散射体的总数将被限制在一定范围

内， 并且几乎所有的反射、折射、衍射等路径都将被

引入到 H͂k 中， 只涉及少量的单元 . 在这种情况之

下， 角域级联信道 H͂k的元素仅在几行或几列内为非

零元素， 而其余元素保持为零， 导致级联信道 H͂k的

稀疏性 . 因此， 可以通过 CS 重建算法， 进行稀疏信

道的重建， 下面考虑CS理论来解决级联信道的估计

问题 .
设 Y͂k = ( )U H

MYk

H ∈ CQ × M为有效测量矩阵， W͂k =
( )U H

MWk

H ∈ CQ × M为有效噪声矩阵， 可以将式（14）重

写为CS模型：

Y͂k = Θ͂H͂ H
k + W͂k （15）

式中：Θ͂ = ( )U T
NΘ

H ∈ CQ × N为传感矩阵 .
虽然可以通过传统的 CS 算法分别估计每个用

户的角域级联信道， 但角域级联信道的稀疏性难以

准确确定， 这表明如果所采用的原子支撑集没有很

好的选择， 传统CS方法进行估计时的精度将会严重

下降 . 为了保证估计精度， 传统CS算法所需的导频

开销依然较大， 尤其在拥有大量元件的RIS场景中， 
这种方法难以实际应用 . 因此， 在实际 RIS 通信当

中， 估计精度、导频开销和适应性之间的权衡将成

为更关键的挑战 .

2   信道估计方案

2.1   SWOMP算法

与 OMP 算法不同，SWOMP 算法在每次迭代过

程中，首先通过重构信号的残差来确定原子的选择

标准，从而构建候选集 .其次，利用正交候选集选出用

来描述信号的原子，并将其存入支撑集中 .然后，通过

求解最小二乘问题对支撑集中原子进行信号重构，进

而更新残差值 .在每轮迭代中，SWOMP算法根据设定

的阈值准则选择最优原子，其中阈值定义为：Th =
αmax{abs (u)}，其中，原子门限阈值α的取值范围为

[ 0，1]，u = abs[ ATr s - 1 ] =abs a j，r s - 1 ( )1 ≤ j ≤ N ，A表

示传感矩阵，a j 表示 A 的第 j列， r s - 1 表示残差， 
a，r s - 1 表示求a和 r s - 1的内积， s表示迭代次数 .

2.2   IWOA
针对 WOA 算法收敛慢、全局搜索弱、参数固化

等问题， 提出 IWOA算法， 通过引入游动幅度因子 ε
与目标吸引力因子 γ增强搜索能力， 并借助缓存机

制减少适应度函数调用， 以提高收敛速度与计算

效率 .
WOA是一种新型的自然元启发式优化算法， 它

模仿了座头鲸的狩猎行为［23］. 鲸鱼通常会在猎物附

近徘徊，形成一个缩小的圆圈，并沿着圆圈制造出独

特的气泡以进行捕猎 .为了将鲸鱼的捕食行为应用

于优化算法，需对这个过程进行数学建模 .首先，鲸

鱼的初始种群需要在随机过程中创建；然后，将鲸鱼

的狩猎过程分为两个阶段，即开发和随机探索 .
2.2.1   开发阶段

鲸鱼在捕猎时会将猎物包围起来， 鲸鱼的收缩

过程可以描述为：

X ( t + 1) = X *( t) - E ⋅ D （16）
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式中：t表示当前的迭代次数；X *( t)表示第 t次迭代中

最佳位置， 可以描述为：

X *( t) = arg minX i( )t f (X i( t) ) （17）
式中：i = 1，2，.…，P， P表示鲸鱼个体的数量；X i( t)
表示第 i个鲸鱼的位置；f ( ⋅ )表示适应度函数， 采
用均方误差（mean square error， MSE）进行衡量：

f (X i( t) ) = 1
K∑

k = 1

K ( ) Hk - Ĥk( )X i( )t
2
F

（18）
式中：Hk是真实信道矩阵， Ĥk为信道估计值 .

在每次迭代中， 通过比较所有鲸鱼个体的适应

度值， 选择当前种群中适应度最优， 即 MSE最小的

鲸鱼个体位置作为全局的最佳位置X *( t)， 引导其他

鲸鱼个体向最优方向移动 .
D用于量化当前位置与最优位置之间的距离， 

调整步长的随机性：

D = |F ⋅ X *( t) - X ( t) | （19）
式中： X ( t)是当前鲸鱼的位置 . 系数向量E、F可以

表示为：

E = 2e ⋅ r - e （20）
F = 2 ⋅ r （21）

式中：r是在[0，1]范围内均匀分布产生的随机向量；

e为收敛因子， 随迭代次数 t的增加从 2逐步线性递

减到0， 可以表示为：

e = 2 - 2t/tmax （22）
式中：tmax为最大迭代次数 .

鲸鱼通过式（16）更新位置， 即鲸鱼会根据最佳

位置来更新自己的位置 . 系数向量E和F是负责控

制鲸鱼向最佳位置靠近的参数， 它们共同控制了算

法在搜索空间中的全局探索和局部开发能力 . 利用

鲸鱼当前位置和最佳位置来模拟鲸鱼向上螺旋运动

的觅食行为， 其数学模型可以描述为：

X ( t + 1) = X *( t) + D' × ebl × cos (2πl ) （23）
式中：D' = | X *( t) - X ( t) |表示鲸鱼与当前全局最优

个体之间的距离；b表示限定对数螺旋形状的常数；   
 l是［-1，1］区间内的随机数 .

为了更好地描述鲸鱼在收缩包围和螺旋路径之

间进行选择的自然行为，其数学模型描述为：

X ( t + 1) = ì
í
î

X *( )t - E ⋅ D，                           p < 0.5
X *( )t + D' × ebl × cos (2πl )，p ≥ 0.5

（24）

式中：p表示[0，1]范围内均匀分布生成的随机数 .
2.2.2   随机搜索阶段

在 WOA 中， 鲸鱼不仅局限于更新自己的最佳

位置 . 为提高WOA的搜索能力， 该算法会随机选择

一只鲸鱼来引导其他鲸鱼 . 为了达到这个目标， 使
系数向量 | E | > 1， 远离目前已知的最优个体， 该阶

段的数学模型为：

D = |F ⋅ X rand - X | （25）
X ( t + 1) = X rand - E ⋅ D （26）

式中：X rand 表示当前种群中随机选择的鲸鱼的位置

向量 .
2.2.3   算法改进

WOA 在解决实际问题时， 往往存在收敛速度

慢， 全局搜索能力不足， 参数固定而无法动态适应

不同阶段的需求， 为克服上述问题， 本文提出一种

IWOA， 通过引入游动幅度因子ε和目标吸引力因子

γ， 进一步增强算法的全局搜索和局部开发能力 . 同
时， 引入缓存机制， 减少调用适应度函数的次数， 
减少算法的运算时间 .

在WOA中， 系数向量E决定了鲸鱼个体的行为

是否偏向于探索新区域或开发已有区域，改进算法

中引入游动幅度因子ε对E进行重新定义，使得在算

法前期，ε的值较大，增强其全局探索能力；在算法后

期，ε的值减小，增强其对局部的开发能力 .式（20）可

以重新定义为：

E = ε × (2e ⋅ r - e) （27）
其中ε的动态调整遵循：

ε = εmax - t
tmax

(εmax - εmin ) （28）
在WOA中随机游动行为描述为式（24），在改进

算法中，将目标吸引力因子 γ作为动态参数对参数 b

进行调节，使得在算法初期，γ较小，有利于随机探索

新的区域；在算法后期，γ值增大，有助于算法快速收

敛至最优解 . 其中γ可以表示为：

γ = γmin + t
tmax

(γmax - γmin ) （29）
式（23）可以更新为：

X ( t + 1) = X *( t) + D' × eγl × cos (2πl ) （30）
在 WOA 中所有鲸鱼个体都根据最佳位置或随

机鲸鱼的位置进行统一更新 .而在 IWOA中，选取前

一部分个体用于专注最佳位置的更新，引入游动幅
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度因子 ε，将鲸鱼个体划分为不同的优先级，有针对

性地优化了一部分关键个体，进而提升算法的全局

探索和开发效率 .对剩余个体采用基于目标吸引力

因子 γ的螺旋更新测量，使算法能够在后期有效跳

出局部最优解 .
对于前一部分个体， 即 i ∈ [1，ë ûP × λ ]， 其更

新规则为：

X i( t + 1) = ì
í
î

X rand( )t - E ⋅ D， || E ≥ 1
X *( )t - E ⋅ D， || E < 1 （31）

对于后一部分个体， 即 i ∈ [ é ùP × λ ，P ]， 其更

新规则为：

X i( t + 1) = X *( t) + D' × eγl × cos (2πl ) （32）
式中：λ为［0，1］之间的数， 表示选取优异个体的

比例 .
为降低算法的复杂度， 在 IWOA 中引入缓存机

制， 可以有效降低算法的运行时间 . 在算法的每次

迭代中， 为每个鲸鱼个体计算适应度前， 首先检查

缓存中是否已存在该鲸鱼位置对应的适应度值， 将
鲸鱼个体带来的当前位置向量转化为唯一的字符串

键， 为每个位置生成对应的缓存键值对， 当某个位

置的适应度值已在缓存中时， 直接读取缓存；否则

计算适应度值并存储到缓存中 . 表1为 IWOA算法的

具体流程 .

2.3   IWOA-DS-SWOMP算法

根据级联信道的表达式Hk ≜ Gdiag (h r，k )，将式（2）
和式（3）代入，可以获得级联信道Hk的完整表达式：

Hk = MN
LG

∑
l = 1

LG

αG
l1b (ϑGrl1，ψ

Gr
l1 )a (ϑGt

l1，ψ
Gt
l1 ) T ⋅

         diag ( N
L r，k

∑
l2 = 1

Lr，k

α r，k
l2 a (ϑ r，k

l2 ，ψ
r，k
l2 ))    

（33）

对角矩阵 diag (a ) 与向量 aΤ 的乘积等效于每个

元素进行相位叠加， 对应角度进行加法操作， 其数

学表达式为：

a (ϑGt
l1，ψ

Gt
l1 ) T ⋅ diag (a (ϑ r，k

l2 ，ψ
r，k
l2 )) =

a (ϑGt
l1 + ϑ r，k

l2 ，ψ
Gt
l1 + ψ r，k

l2 ) Τ （34）
将式（33）代入式（7）中， 可以将角域级联信道

可以进一步表示为：

H͂k = MN
LGL r，k

∑
l1

LG ∑
l2

Lr，k

αG
l1α

r，k
l2  

U H
M b ( )ϑGr

l1，ψ
Gr
l1 a ( )ϑGt

l1 + ϑ r，k
l2 ，ψ

Gt
l1 + ψ r，k

l2

T
UN （35）

令 b͂ ( )ϑ，ψ = U H
M b ( )ϑ，ψ 表示 BS 在角域中稀疏

化的归一化阵列响应矢量， a͂ (ϑ，ψ ) = U Η
N a (ϑ，ψ ) 表

示 RIS 在角域中稀疏化的归一化阵列响应矢量， 此
时角域级联信道可以进一步简化为：

H͂k = MN
LGL r，k

∑
l1

LG ∑
l2

Lr，k

αG
l1α

r，k
l2  

b͂ ( )ϑGr
l1，ψ

Gr
l1 a͂T( )ϑGt

l1 + ϑGr，k
l2 ，ψ

Gt
l1 + ψGr，k

l2 （36）
根据上式，每一条从UE到RIS再到BS的完整路

径为角域级联信道 H͂k中的一个非零元素，其中行索

引由 (ϑGr
l1，ψ

Gr
l1 ) 决定，列索引取决于 (ϑGt

l1 + ϑ r，k
l2 ，ψ

Gt
l1 +

ψ r，k
l2 ). 不同用户的角域级联信道{H͂k}

K

k = 1 表现出双结

构稀疏性 .首先，对于不同的用户来说，RIS 到 BS 的

信道G为公用信道，因此角域级联信道{H͂k}
K

k = 1 的非

零行所在的位置与用户无关，即角域级联信道

{H͂k}
K

k = 1 的非零元素完全位于公共的 LG 行上，即

{H͂k}
K

k = 1 表现出行结构稀疏特性 . Ω Kr 表示级联信道

H͂k非零元素的行集， Ω r表示完全公共行支撑集，故：

Ω 1r = Ω 2r = ⋅ ⋅ ⋅ = Ω Kr = Ω r （37）
其次，考虑到不同用户可能共享RIS和用户之间

的一部分散射体，这导致RIS与不同用户之间的信道

h r，k可能存在部分共同路径，并展现出相同的角度特

征 .Ω l，kc 表示第 l1非零行的非零元素的列集，则有：

Ω l1，1c ∩ Ω l1，2c ∩ ⋯ ∩ Ω l1，Kc = Ω l1，Comc （38）
式中：Ω l1，Comc 表示用于{H͂k}

K

k = 1的第 l1行的部分公共列

支撑集， 其中 l1 = 1，2，⋅ ⋅ ⋅，LG.

表1   IWOA
Tab.1   Improved whale optimization algorithm

算法1：IWOA
输入：鲸鱼个体数P， 最大迭代次数 tmax， 参数上界， 参数下界， 维
度dim， 适应度函数 f ( ⋅ )
1.初始化动态因子：εmax、εmin、γmax、γmin
2.for t = 1，2，⋅ ⋅ ⋅，tmax do
3.由式（28）~式（29）更新动态因子ε、γ的值

4.引入缓存机制并通过式（18）计算适应度函数 f ( ⋅ )的值

5.更新适应度值以及领导者的位置X *( t)
6.for i = 1，2，⋅ ⋅ ⋅，ë ûP × λ  do
7.由式（27）更新参数E， 由式（31）更新鲸鱼下一次的位置

8.end for
9.for i = é ùP × λ ，⋯，P do
10.由式（32）更新鲸鱼下一次的位置

11.end for
12.end for
13.得到最优解X *( t)
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对于 DS-SWOMP 算法而言， 行稀疏度 LG、列稀

疏度 L r，k分别为RIS-BS以及UE-RIS第 k个用户的传

播路径数 . RIS与不同用户之间的信道 h r，k可能存在

部分公共路径， 即为公共列稀疏度 Lc. DS-OMP算法

中公共路径的数目是人为设置的， 但在实际应用当

中， 公共路径的数目是不确定且易变的， 无法准确

获取环境中公共路径的数目，会导致算法实用性和

准确性降低 .此外，OMP算法每次只能选择一个最相

关的原子，降低了该算法的实用性 .而 SWOMP 算法

能够在每次迭代中根据预定义的阈值从原子集中选

择多个原子，与 OMP 相比有巨大的优势，可以保证

更多相关性强的原子进入原子集中，从而提高重构

的精度，但由于原子选择阈值是人为进行预设，信道

环境总是变化的，如果原子选择阈值不能够自适应

地进行调整，原子支撑集没有很好地选择，会大大降

低重构的精度 .
基于上述分析，本文提出 IWOA-DS-SWOMP算

法，引入原子门限阈值 α，并使用 IWOA 对 α进行优

化，使算法可以在稀疏先验未知的情况下进行自适

应信道估计，提高算法在不同信道条件下的适应性 .
表2为所提出 IWOA-DS-SWOMP算法的具体流程 .

IWOA-DS-SWOMP 算法由三个算法构成：首先

使用算法 3对公共非零行支撑集进行估计， 其中 Ω̂ r
由 LG 个非零行的行索引组成， 然后使用 IWOA对阈

值 α进行寻优， 将其代入算法 3 中对部分公共列支

撑集 Ω̂ l1，Comc 进行估计；然后使用算法 4对部分单独列

支撑集 Ω̂ l1，kc 进行估计；步骤 8 使用 LS 算法对角域稀

疏信道矩阵 Ĥ͂k进行估计， 最后通过步骤11将角域稀

疏信道矩阵转换到空间域中来获得最终的级联信道

矩阵 Ĥk.
算法 3 对公共非零行支撑集 Ω̂ r 进行估计，角域

级联信道 Ĥ͂k的非零行会导致 Y͂k所对应列具有较高

的功率 .因此，首先通过步骤 3 计算 Y͂k每列的功率，

然后通过步骤 5取前 LG 行高功率的列索引更新至公

共非零行支撑集 Ω̂ r 中 .表 3 为公共非零行支撑集估

计算法的具体流程 .

算法 4对部分公共列支撑集进行估计， 在步骤 6
中， 计算感知矩阵 Θ͂与残差向量 r͂k之间的相关性， 
在步骤 7引入原子门限阈值 α， 使得在每次迭代中， 
算法不只选择相关性最强的原子， 而是选择多个相

关性强的原子构成支撑集， 进而提高算法的重构精

度 . 在步骤10中使用LS算法对稀疏信号进行重构恢

复， 去除非零元素对信号的影响， 通过步骤 11更新

残差向量 r͂k；步骤 12 对所选原子的列索引的出现次

数 cl1(n∗ )进行统计， 出现次数越多， 说明所选原子的

相关性越强 . 表 4 为部分公共列支撑集估计算法的

具体流程 .
算法 5 对单独列支撑集进行估计 . 首先将单独

列支撑集 Ω̂ l，kc 初始化为由算法 4 得到的部分公共列

支撑集 Ω̂ l1，Comc ， 然后在步骤 6 和步骤 7 中，基于部分

公共列支撑集 Ω̂ l1，Comc 初始化稀疏向量 ĥ͂k和残差向量

r͂k， 最后遵循与算法 3相同的思想来估计单独列支撑

集 .表5为部分单独列支撑集估计算法的具体流程 .
2.4   算法复杂度分析

本文所提 IWOA-DS-SWOMP 算法的复杂度由

表2   IWOA-DS-SWOMP级联信道估计算法

Tab.2   IWOA-DS-SWOMP cascade channel
estimation algorithm

算法2：IWOA-DS-SWOMP级联信道估计算法

输入：测量矩阵 Y͂k， 传感矩阵 Θ͂， 原子门限阈值α， 行稀疏度LG， 列
稀疏度Lr，k
1.初始化：估计的级联信道{H͂k}

K

k = 1
2.算法3：对公共非零行支撑集 Ω̂r进行估计

3.使用 IWOA优化α

4.算法4：对部分公共列支撑集 Ω̂ l1，Comc 进行估计

5.算法5：对部分单独列支撑集 Ω̂ l1，kc 进行估计

6.for l1 = 1，2，⋅ ⋅ ⋅，LG do
7.for k = 1，2，⋅ ⋅ ⋅，K do
8.使用LS算法对角域稀疏信道矩阵 H͂k进行估计

9.end for
10.end for
11.将角域稀疏矩阵转换到空间域中获得最终的级联信道矩阵：

Ĥk = U Η
M Ĥ͂kUN，∀k

12.得到估计的级联信道 Ĥk

表3   公共非零行支撑集估计算法

Tab.3   Common non-zero row support set 
estimation algorithm

算法3：公共非零行支撑集估计算法

输入：测量矩阵 Y͂k， 行稀疏度LG
1.初始化功率：E = 0M × 1
2.for k = 1，2，⋅ ⋅ ⋅，K do
3.计算 Y͂k每列的功率：E (m) = E (m) +  Y͂k( )：，m

2
F

4.end for
5.从步骤3计算所得的功率中选取前LG行来构成公共非零行支撑

集：Ω̂r = Γϒ(E，LG )
6.得到公共非零行支撑集 Ω̂r
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IWOA 优化模块和 DS-SWOMP 共同决定算法 . DS-
SWOMP 算法复杂度可分解为以下部分：在算法 2
中， 对每个用户的接收信号 Y͂k ∈ CQ × M进行能量的

计算和累加，其复杂度为Ο (KQM )；在算法 3 中， 在
对单用户的稀疏信号进行恢复和估计时的复杂度为

Ο (NQL3 r，k )，结合对每个用户 k的每个非零行 l1 都进

行了估计，迭代总次数为 LGK， 所以算法 3的总体复

杂度为Ο (LGKNQL3 r，k )；与算法 3思想相同，算法 4的

复杂度为Ο (LGKNQ (L r，k - | Rc | ) 3 ).综上，DS-SWOMP
算法总体的复杂度为Ο (K (QM + LGNQL3 r，k ) ).

IWOA 的复杂度主要取决于鲸鱼个体数量 P和

最大迭代次数 I， 在每一次迭代中， IWOA 都需要运

行一次DS-SWOMP算法以评估每个个体的适应度， 
因 此 WOA-DS-SWOMP 算 法 的 总 体 复 杂 度 为

Ο (PIK (QM + LGNQL3 r，k ) ).
仿真结果表明， DS-SWOMP算法在保持与 DS-

OMP 相近复杂度的同时获得了更好的信道估计性

能 . 尽管结合 IWOA会增加算法的复杂度， 但其通过

动态惯性权重与自适应阈值机制显著增强了算法对

不同环境信道的鲁棒性， 获得更好的信道估计性

能 . 此外， IWOA 采用的缓存机制可用历史最优解， 
可以减少适应度函数的计算， 有效缓解了计算开

销， 在实际应用中， IWOA-DS-OMP 算法的复杂度

低于Ο (PIK (QM + LGNQL3 r，k ) ). 各算法的复杂度对

比如表6所示 .
表6   算法复杂度对比

Tab. 6   Comparison of computational complexity

算法

OMP
SWOMP
DS-OMP

DS-SWOMP
WOA-DS-SWOMP
IWOA-DS-SWOMP

复杂度

Ο (NQ (LGLr，k ) 3 )
Ο (NQ (LGLr，k ) 3 )

Ο (K (QM + LGNQL3 r，k ) )
Ο (K (QM + LGNQL3 r，k ) )
Ο (PIK (QM + LGNQL3 r，k ) )

≤ Ο (PIK (QM + LGNQL3 r，k ) )

表4   部分公共列支撑集估计算法

Tab.4   Partial common column support set estimation 
algorithm

算法4：部分公共列支撑集估计算法

输入：测量矩阵 Y͂k， 传感矩阵 Θ͂， 原子门限阈值α， 行稀疏度LG， 列
稀疏度Lr，k， 公共非零行支撑集 Ω̂r
1.初始化第 l1条路径下每个用户的列支撑集以及列索引统计次数：

Ω̂ l1，kc = ∅，∀l1，k，cl1 = 0N × 1，∀l1
2.for l1 = 1，2，⋅ ⋅ ⋅，LG do
3.for k = 1，2，⋅ ⋅ ⋅，K do
4.选取第 l1个非零行构成有效测量向量， 同时初始化残差值：y͂k =
Y͂k(：，Ω̂r( l1 ) )，r͂k = y͂k

5.for l2 = 1，2，⋅ ⋅ ⋅，Lr，kdo
6.计算感知矩阵和残差向量之间的相关性n∗ =
arg max
n = 1，2，⋅ ⋅ ⋅，N

 Θ͂Η( )：，n r͂k
2
F

7.选取原子：Js = find (n∗ ≥ α∗ max (n∗ ) )
8.构成有效原子支撑集：Ω̂ l1，kc = Ω̂ l1，kc ∪ Js
9.初始化信道矩阵：ĥ͂k = 0N × 1
10.使用LS算法对稀疏信道矩阵进行重构恢复：ĥ͂k = ( Ω̂ l1，kc ) = Θ͂†(：
，Ω̂ l1，kc ) y͂k
11.更新残差：r͂k = y͂k - Θ͂ĥ͂k

12.统计列索引的出现次数：cl1(n∗ ) = cl1(n∗ ) + 1
13.end for
14.end for
16.选取前Rc个列索引构成公共列支撑集：Ω̂ l1，Comc = Γϒ(cl1，Rc )
17.得到部分公共列支撑集 Ω̂ l1，Comc

表5   部分单独列支撑集估计算法

Tab.5   Partial separate column support set estimation 
algorithm

算法5：部分单独列支撑集估计算法

输入：测量矩阵 Y͂k， 传感矩阵 Θ͂， 行稀疏度LG， 列稀疏度Lr，k， 公共

非零行支撑集 Ω̂r， 部分公共列支撑集 Ω̂ l1，Comc
1.初始化单独列支撑集：Ω̂ l1，kc = Ω̂ l1，Comc ，∀l1，k
2.for l1 = 1，2，⋅ ⋅ ⋅，LG do
3.for k = 1，2，⋅ ⋅ ⋅，K do
4.y͂k = Y͂k(：，Ω̂r( l1 ) )
5.ĥ͂k = 0N × 1
6.ĥ͂k = ( Ω̂ l1，kc ，：) = Θ͂†(：，Ω̂ l1，Comc ) y͂k
7.r͂k = y͂k - Θ͂ĥ͂k

8.for l2 = 1，2，⋅ ⋅ ⋅，Lr，k - length (Rc )do
9.n∗ = arg max

n = 1，2，⋅ ⋅ ⋅，N
 Θ͂Η( )：，n r͂k

2
F

10.Ω̂ l1，kc = Ω̂ l1，kc ∪ n∗

11.ĥ͂k = 0N × 1
12.ĥ͂k = ( Ω̂ l1，kc ) = Θ͂†(：，Ω̂ l1，kc ) y͂k
13.r͂k = y͂k - Θ͂ĥ͂k
16.end for
17.end for
18.end for
19.得到单独列支撑集 Ω̂ l1，kc
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3   仿真分析

仿真参数设置如表7所示 .
本文采用归一化均方根误差作为衡量标准， 单

位为dB， 公式如下所示：

NMSE = 10 lg
æ

è

ç

ç

ç

ç
ççç
ç

ç

ç∑
k = 1

K

 Hk - Ĥk

2
2

∑
k = 1

K

 Hk

2
2

ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷
（39）

图 2所示为WOA和 IWOA在不同导频开销Q下

算法的收敛性对比图， 设置适应度函数值为目标函

数值 . 在Q较低时， 由于系统观测数据不足， 信道估

计精度受限， 相比于传统的 WOA， IWOA 能够更好

地寻找最优解显著提升性能， 其收敛速度以及优化

性能优于 WOA. 在Q较高时， 系统观测信息变得充

足， 信道估计本身已接近最优解， IWOA带来的提升

空间有限 . 但总体来说， 在所有Q下， IWOA在收敛

性和寻优效果上均优于WOA.

图 3 所 示 为 WOA-DS-SWOMP 和 IWOA-DS-
SWOMP 在不同导频开销Q下的算法运行时间对比

图 . 随着Q增加， 信道估计中矩阵运算涉及更高维

度的数据， 计算复杂度及运算时间上升 . 所提算法

引入了缓存机制， 在一定程度上可以减少适应度函

数的计算， 进而减少运算时间的运行时间， 所提算

法在所有Q下的运算时间均小于WOA-DS-SWOMP
算法， 总体运算时间降低了 23.5%. 图 2~图 3表明所

提算法在获得更好信道估计性能的基础上， 有效提

升了运算效率 .
为验证算法改进模块的有效性， 通过图 4 消融

实验对比不同方案性能 . 完整方案为 IWOA-DS-

表7   仿真参数

Tab. 7   Simulation parameter

仿真参数

天线数量M

RIS反射元件数量N

用户数量K

行稀疏度LG
列稀疏度Lr，k

RIS-BS距离dRB /m
UE-RIS距离dUR /m
鲸鱼个体数量P

最大迭代次数 tmax
精英个体比例λ

维度dim

取值

64
256
16
5
8

10
100

5
80
0.3
1

                                 （a）导频开销Q=48                                                （b）导频开销Q=64                                                 （c）导频开销Q=80

                                  （d）导频开销Q=96                                                 （e）导频开销Q=112                                            （f）导频开销Q=128
图2   不同导频开销下算法收敛对比图

Fig.2   Comparison diagram of algorithm convergence under different pilot overheads

214



第 12 期 彭艺等：改进鲸鱼优化算法辅助RIS级联信道估计

SWOMP， 其性能最优；移除动态因子后的 WOA-
DS-SWOMP 算法 NMSE性能恶化， 验证了游动幅度

因子ε和目标吸引力因子γ对全局搜索的促进作用；

固定阈值方案DS-SWOMP性能最差， 说明了自适应

阈值优化对原子筛选的重要性 .

在Q较小时，由于观测信息不足导致测量矩阵

列相干性增强，传统WOA因固定收敛因子与螺旋参

数易陷入局部最优，而 IWOA 通过 ε和 γ的协同调

控， 在迭代初期强化全局探索以规避噪声干扰， 后
期聚焦局部开发以提升收敛精度， 结合精英个体分

组策略与缓存机制， 其 NMSE 性能较传统 WOA 降

低；当Q充足时， 测量矩阵正交性改善使得信道稀疏

特征显化， 原子门限阈值敏感性降低， IWOA的动态

优化边际收益减弱， 但 IWOA 仍通过计算加速机制

维持时间效率优势， 验证了其在复杂信道环境下的

自适应性 .

图5所示为所提方案在SNR为0， 不同导频开销

Q和不同原子门限阈值α下的NMSE性能 . 在所有Q

值下， NMSE均随α呈现先降后升的趋势：α过小时， 
原子筛选过程会保留大量噪声主导的原子；α过大

时， 则会过度剔除有效原子， 特别是弱径分量， 这
表明了存在使得估计误差最小的最优 α阈值 . 且在

不同 Q值下， 其对应最优的 α是不同的：当 Q较低

时， 信道投影能量易受噪声影响， 导致噪声与真实

路径能量难以区分， 显著增强NMSE对α的敏感度；

随着Q增加， 导频序列的正交性增强， 原子能量分

布呈现显著峰化特征， 真实路径对应的原子能量与

噪声基底形成明显区分度， 使得 α阈值能够在较宽

范围内保持稳定的筛选能力 .

在不同场景下信道的有效路径数及功率分布存

在显著差异， 传统手动调参的方法难以实时适应信

道的动态变化， 而 IWOA 可在高维参数空间中进行

全局寻优， 有效克服了传统阈值选择中存在的经验

依赖和场景失配问题 .
图6所示为在SNR为0，不同导频开销Q下所提方

案与OMP算法、SWOMP算法、DS-OMP算法（Lc = 6）、
DS-SWOMP算法的NMSE对比 .Q的增加改善了测量

矩阵的列相干性，增强了原子与真实信道路径的匹

配精度，各算法性能均得到提升 .当Q为 128时，相比

于传统 OMP 算法，所提方案在 NMSE 性能上提升了

约 4 dB；相较于 SWOMP算法，提升了约 2 dB；相较于

DS-OMP算法提升了大约 1.5 dB.这种显著优势源于

所提算法在原子选择阶段，IWOA动态调整阈值避免

了OMP/SWOMP的贪婪迭代导致的误差累积 .

图3   不同导频开销下的算法运行时间对比图

Fig.3   Comparison of algorithm running time under different 
pilot overhead

图4   消融实验分析

Fig.4   Ablation study analysis

图5   不同导频开销下的NMSE
Fig.5   NMSE performance under different pilot overhead
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当Q较小时， DS-SWOMP算法因固定阈值导致

的噪声原子误选和弱径漏检， 性能劣于通过局部约

束保持鲁棒性的 DS-OMP. 随着Q增大， DS-OMP的

固定约束会引入冗余的原子， 导致搜索方向偏移， 
而 DS-SWOMP 的弱正交性通过单次迭代选择多个

原子提升匹配精度 . 所提算法通过 IWOA 自适应调

整DS-SWOMP的阈值， 动态平衡原子筛选的灵敏度

和特异性， 使其在所有Q值下均优于其他算法， 特
别是在低导频时， 相比 DS-SWOMP 算法提升了约

2.5 dB， 验证了所提算法在非平稳信道环境中的泛

化能力 .
在图 7 中， 将所提方案的 NMSE 性能与 OMP 算

法、SWOMP 算法、DS-OMP 算法（Lc = 6）在不同 SNR
下进行比较 . 由图 6 可知， 不同算法的 NMSE 随着

SNR 的增大均呈现降低的趋势， 随着 SNR 的增大， 
使得信道投影能量与噪声基底可区分度显著增强， 
噪声影响逐渐变小， 各方案的 NMSE 性能都有所提

升， 所提方案在不同 SNR 下的性能均优于其他算

法 . 所提方案在 SNR较低时， IWOA自动优化原子门

限阈值， 放宽原子选择条件， 并通过残差能量检测

补偿噪声干扰， 使其在低 SNR下有效提升路径的捕

获率；在高 SNR 环境下， 噪声功率降低使得传统算

法性能都有所提升， 但所提算法通过对列支撑集的

动态扩展仍然保持性能优势 .
图 8 所示为不同 RIS-BS 路径数目 LG 对所提算

法的影响 . 随着导频开销Q的增加， 各 LG 配置下的

NMSE性能均呈现下降趋势， 而在相同的Q下， LG的

取值越大则NMSE的性能越差 . 当RIS-BS间仅有单

一路径时， 信道矩阵具备理想稀疏特性，算法在原

子选择阶段能精准捕捉唯一路径特征，因此当 LG =1
时， NMSE 始终最低，且随Q的增加斜率逐渐稳定；

随着 LG的增加，信道稀疏度降低，需要更多的导频补

偿稀疏性的损失，同时原子相关性增强，算法更难准

确地选择原子，导致信道估计算法性能下降 .

图 9所示为不同 UE-RIS路径数目 L r，k对所提算

法的影响 . 由图 9 可知，随着导频开销Q的增加，各

L r，k配置下的 NMSE 性能均呈现下降趋势，而在相同

的Q下， L r，k的取值越大则 NMSE 的性能越差 . 随着

L r，k的增大，信道矩阵的稀疏性降低，导致支撑集选

择不完整，残差中残留显著的非零分量，使得用户特

有路径占比提高，公共支撑集规模缩小，公共列估计

效率下降，导致 NMSE 性能恶化，算法需要更多的Q

才能维持相同的性能 .

图8   不同RIS-BS路径数目下算法性能对比

Fig.8   Algorithm performance comparison under different 
RIS-BS path counts

图7   NMSE随SNR变化曲线

Fig.7   NMSE curve with SNR
图6   NMSE随导频开销变化曲线

Fig.6   NMSE curve with pilot overhead
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4   结论

本文针对 RIS辅助多用户毫米波无线通信系统

进行信道估计导频开销大、自适应能力差等关键问

题， 提出了 IWOA-DS-SWOMP 算法 . 首先引入原子

门限阈值， 采用DS-SWOMP算法选取多个强相关性

的原子来构成原子支撑集， 同时应用 IWOA 对原子

门限选择阈值进行优化 . 结果表明， 相比于传统的

信道估计方案， 所提出的信道估计方案在导频开

销、自适应能力方面表现出显著的优势， 能够有效

提升信道估计的精度， 降低算法运行时间 .
下一步工作将考虑：

1）针对 RIS 辅助的多用户动态场景， 优化算法

在动态场景中的自适应能力 .
2）针对不同 RIS 配置（如元素数目、位置、反射

系数等）， 分析算法在不同配置下的性能， 进而提出

针对特定配置的自适应优化方案 .
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