#5212 B OR E A (A R R R D) Vol.52,No.12
2025 4 12 A Journal of Hunan University (Natural Sciences ) Dec.2025

XEHS :1674-2974(2025)12-0206-13 DOI:10.16339/j.cnki.hdxbzkb.2025299

B i R B UL B A H B RIS ZR B (58 {1t

EZSARNER RN R R X LR
(1. BB TR (5 B TS A ahik2#8e, =r EEB 650031;
2. BB T R meATHENE AR N FHE S LRE, =/ I 650500)

B EANTEMNTREADRYALEBRE ZAARTRARGES TN EEFRT4H X8
i R A S R, PR — A 2 A e i 8 S ARG S R 0 IR L M 5 o R 55 OE S IE ik B Ak
TR EE AR A BE R IR FEE R IR BLik 97 Lk ik F S AR AR A M R T R MR R T
XL A B R SR R RAC R T IR BAE 1 e AR IE LR AZ 1 0 T A3 A
A BPRFRT LR R SGFEAT L, ARSI 270 ) 4 AL REAN, MR THA
MR IRAZ AR Y B, R TR 5 R 2 — 3 S ARIR £ O @ R I A G AR AR L B
SR RAT RIF A, LERR M E &0 T AA BIF6 A0Sk,

KPR A T EME AT B BT B IR bF B k2 — 3 AR
®E

hE S ES :TN928 MHRER SRS A

Improved Whale Optimization Algorithm Assisted RIS Cascade
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Abstract: To address the challenges of excessive pilot overhead and limited adaptability in cascade channel
estimation for reconfigurable intelligent surface (RIS) assisted wireless communication systems, this paper proposes
an improved whale optimization algorithm integrated with a dual-structure sparse stagewise weak orthogonal
matching pursuit algorithm (IWOA-DS-SWOMP). The framework employs an adaptive threshold—controlled
SWOMP mechanism to iteratively select multiple highly correlated atoms for constructing atomic support sets, while
the atomic selection threshold via INOA is dynamically optimized to adapt to real-time channel variations. This dual
optimization strategy enhances atomic support set extraction accuracy, improves channel estimation precision, and
reduces algorithm runtime. Simulation results demonstrate that the proposed scheme achieves superior normalized

mean square error (NMSE) performance compared to conventional RIS cascade channel estimation methods,
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attaining higher channel estimation accuracy with reduced pilot overhead while exhibiting enhanced adaptability and

robustness under diverse channel conditions.

Key words: channel estimation ; reconfigurable intelligent surface ; stagewise weak orthogonal matching pursuit;

whale optimization algorithm ; normalized mean square error
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Fig.1 RIS auxiliary wireless communication system model
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