文章编号:1674-2974(2017)05-0113-09

织物膜材弹性参数在应力空间上 响应特征及非线性本构分析^{*}

陈建稳^{1,3†},陈务军²,王明洋³,周涵¹,赵兵²,姚波¹,高成军²

(1.南京理工大学理学院,江苏南京 210094; 2.上海交通大学空间结构研究中心,上海 200030;3.南京理工大学机械工程学院,江苏南京 210094)

摘 要:为揭示飞艇用层压类膜材弹性参数在平面应力空间上的响应特征,首先以高性 能蒙皮材料 Uretek3216LV (18)为研究对象开展一系列双轴拉伸试验,获得多比例应力应变 关系数据;然后运用 MATLAB 软件进行数值处理,分析得出应变及弹性参数在应力空间上 的响应曲面特征.基于积分加权方法,分析了弹性参数在不同应力水平及应力比例上变化规 律.研究发现正交互补性质在蒙皮材料弹性参数计算时的适用性不足,且材料弹性参数表现 出明显正交异性特征.另外,层压织物膜材异于均质材料,大泊松比(>0.5)的存在是其经纬 纱间复杂相互作用及变形机理的体现.

Response Characteristics of Elastic Parameters of Woven Fabrics in Stress Space and a Nonlinear Constitutive Analysis

CHEN Jianwen^{1,3†}, CHEN Wujun², WANG Mingyang³, ZHOU Han¹, ZHAO Bing², YAO Bo¹, GAO Chengjun²

(1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;

Space Structures Research Center (SSRC), Shanghai Jiaotong University, Shanghai 200030, China;
 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: In order to reveal the response characteristics of the laminated fabric for airships under plane stresses, a series of biaxial tensile tests were first conducted on high-performance envelope materials Ure-tek3216LV®. Based on the stress-strain data obtained from the biaxial tensile tests, the response surfaces of strain and elastic parameters were displayed using the MATLAB program. Using an integrated weigh-ting method, the characteristics of elastic parameters affected by the stress levels and stress ratios were analyzed. The results indicate that reciprocal relationship doesn't apply to the constitutive model of laminated fabrics, and obvious orthotropy of the elastic parameters can be observed for different stress levels and stress ratios. In addition, the large value of Poisson's ratio (>0.5) can be attributed to the complex interaction and deformation mechanism of warp and weft yarns which make the laminated fabrics different from

* 收稿日期:2016-03-02

作者简介:陈建稳(1981-),男,山东菏泽人,南京理工大学讲师,博士

基金项目:国家自然科学基金资助项目(51608270), National Natural Science Foundation of China(51608270); 江苏省基础研究计划(自然科学 基金)资助项目(BK20150775), The Fundamental Research Program of Jiangsu Province (BK20150775); 中央高校基本科研业务费专项资金资助 项目(30916011342), The Fundamental Research Funds for the Central Universities(30916011342); 中国博士后科学基金资助项目 (2016M601816), The China Postdoctoral Science Foundation(2016M601816)

[†]通讯联系人,E-mail:jianwench@njust.edu.cn

homogeneous materials which makes the laminated fabric different from homogeneous materials. **Key words**: laminated fabric; reciprocal relationship; plane stress; elastic moduli; Poisson's ratio

平流层飞艇凭借静升力驻空,因其具有高空侦察、通信中继和空间探索等诸多领域的应用优势,成为美国、欧盟、日本等世界主要军事大国研究的热点^[1-5].轻质高强的层压类织物膜材广泛应用在飞艇的主(副)气囊、尾翼等关键部件中,其力学响应及弹性参数是飞艇蒙皮结构计算分析、工程设计、确定制造工艺的基础^[2-4].飞艇蒙皮材料为层压类织物 膜材,和建筑用涂层织物类膜材相比,在成型工艺、功能层结构及纤维类型方面存在一定差异^[5],但二者在纱线编织及力学响应分析方面存在相通之处. 织物膜材(包括涂层类及层压类)因经纬纱线交叉编 织及多层复合的结构,其力学性能复杂,具有明显的材料非线性、几何非线性、非弹性及正交异性等特征,其弹性参数的确定也因此具有不确定性和复杂性,一直是国内外学者的研究热点^[6-14].

飞艇蒙皮结构的膜面基本处于平面受力状态, 双向加载下的弹性参数对结构设计分析非常关键. 限于试验条件,在国内外的工程应用中对膜材平面 应力下变形响应特征及弹性参数的研究及应用仍有 待深入^[6-10].

目前,对膜材双轴拉伸弹性参数的计算,基本以 线弹性假设为条件,求取有限的弹性参数[8-10,15].而 双轴拉伸受力下膜材的力学性质,是一项多因素、多 角度的内容,其弹性常数宜涵盖膜材多方位的力学 性质[16].另外,蒙皮材料独特的纱线编织方式及多 功能层的复合结构,使其弹性参数具有多变性和复 杂性,简单少量的弹性参数信息很难全面描述膜材 的力学性质,势必降低工程设计时的精确度.因此, 进一步剖析膜材在双轴受力下弹性常数响应特征及 变化规律,探讨膜材力学响应的力学本质,对准确把 握蒙皮材料在实际飞艇结构中的力学性质及指导结 构设计分析具有重要意义,而国内外对此研究尚不 足.本文针对高性能蒙皮材料 Uretek3216LV 图开 展一系列多比例双轴拉伸试验,深入研究蒙皮材料 弹性参数在应力空间上的响应特征及分布规律,探 讨分析正交异性及循环加载作用对弹性参数的影 响.提出基于应力空间的弹性参数加权计算方法,获 得了材料弹性参数随应力水平及应力比例的变化规 律,并且结合数值模型分析验证了所得参数变化规 律的正确性和适用性.

1 材料和试验

1.1 蒙皮材料及试件尺寸

1.1.1 蒙皮材料

试验材料为热致液晶(LCP)芳族聚酯类膜材 Uretek3216LV®,主要由 Vectran®基布和聚氟乙烯(PVF) 面层及各功能膜层压合而成.Uretek3216LV®膜材是 新型高性能蒙皮材料的代表,具有高强、高比强、高模 量、耐氧化、性态稳定、耐磨等优点,尤因其具有轻质、 气密性优、耐强辐射、耐高温的特点,而在国内外大中 型飞艇、航天领域得到广泛使用^[17].

蒙皮材料 Uretek3216LV 厚度为 0.21 mm,面 密度为 200 g/m²,其织物组成结构及材料外观如图 1 所示.织物为平纹组织结构,织物经纬向密度为 17 ×12 根/cm,经纬纱线细度均为 200 Denier.膜材的 粘贴层为弹性性能良好的丙烯酸化合物.

(a)织物组成结构

 (b)外观形貌
 图 1 蒙皮材料外观及其组织结构示意图
 Fig. 1 Envelope fabrics layout and macro morphology of the envelope materials

1.1.2 试件尺寸

双轴拉伸试件尺寸如图 2 所示,采用十字形切 缝试样,可实现多应力比荷载的施加,是目前普遍采 用的形式^[10,18].试样按膜材的经纬向对称取样,核 心区域为16.0 cm×16.0 cm,悬臂长16.0 cm,夹具 夹持范围为4.0 cm.为有效传递应力使中心区域应 力分布较均匀,悬臂间隔约4.0 cm预制切缝,Bridgens^[19]和 Chen^[20]已证实均匀切缝的存在可有效 扩大应力均匀区面积.裁剪直角将引入较大的应力 集中^[5],本试件采用半径15.0 mm 的过渡圆弧以 减弱应力集中影响.

(b) 形貌图

1.2 双轴拉伸试验

1.2.1 试验环境

试验环境参考 GB/T 6529—2008,试验室相对 湿度(65±4.0)%,温度(20±2)℃.

1.2.2 试验设备及加载制度

双轴循环试验采用自主研制的双轴拉伸试验机 SJTU-I,如图 3 所示.双轴拉伸试验机应变测量范 围:-10%~20%;夹具标准拉伸速率:2~4 mm/min;实时性控制:1~5 ms.采用精密伺服液压 油缸作为动力装置,通过比例阀、溢流阀等实现流量 精确控制,采用力传感器闭环反馈和 PID 控制器进 行实时控制,可实现任意载荷谱的精确跟踪.采用 2 个 Green Pot LP-20F 位移引伸计测量位移并计算 应变,其量程为 20 mm. 采用在等预应力水平基础上的多比例加载路 径,依据膜材单向拉伸应力应变关系并参考文献 [21],设置加载谷值 2.5 kN/m,峰值因比例而异, 比如:1:1峰值均为 12.7 kN/m,1:2 峰值为 12.7 kN/m和 6.25 kN/m,具体如图 4 所示.每个比例 3 个循环,循环周期 T=10 min,各比例间隔 $\Delta T=4$ min;在每个比例前,先做 3 个 1:1循环,以消除前 一比例影响.由于飞艇蒙皮膜材与传统建筑膜结构 有所差异,其应力比相对集中,基本上在 1:2~2: 1间,为凸显这个区域内的应力比,本文选取 9 种比 例:0:1,1:3,1:2,2:3,1:1,3:2,2:1,3 :1和1:0,以获取更详细、更真实的材料力学响应.

图 3 双轴拉伸试验机 Fig. 3 The biaxial testing machine

2 弹性参数计算

参考标准(MSAJ)^[21],采用应变残差法计算弹 性参数.经计算知膜材 Uretek3216LV 不满足正交 互补定理,结果见表 1. *E_x*和*E_y*分别为经纬向弹性 模量,*v_x*和*v_y*分别为相应泊松比参数.

据表1,3 循环下, 膜材 Uretek3216LV 的 K 系数均 大于1.0, 基本上在1.2~1.7. 作者曾对聚酯类膜材 Uretek3216L 进行了分析, 结果和 Uretek3216LV 膜材 基本一致.2 类膜材的 K 系数数值和 Gosling 和 Bridgens^[22-23]对聚酯类 PVC 膜材及玻璃纤维类 PTFE 膜 材的研究结果基本相似.这表明由于受到材料及几何 非线性、非弹性特征的影响,织物膜材本构关系是否满 足正交互补关系值得商榷.

> 表 1 不引入正交互补时弹性常数结果 Tab. 1 Elastic constants obtained without the reciprocal relationship

1 ⁻¹)
1.25
1.46
1.65
;

注: $K = (\nu_y E_y) / (\nu_x E_x)$ 为正交互补系数,满足正交互补时为1.0.

应变响应曲面可全方位呈现膜材应力应变响应特征,是求取弹性参数响应曲面的基础.本文基于应变残差平方和最小的拟合原理(式(1)),采用 MAT-LAB 编程对各应力比试验数据进行三维曲面拟合. 所得应变响应曲面如图 5 所示.

$$\int_{a} \{f(x) - y(x)\}^2 dx \to \text{Min.}$$
(1)

式中:y(x)为连续函数 f(x)在区间[a,b]内的逼近函数.

图 5 经纬向应变响应曲面对照(3rd) Fig. 5 Biaxial strain response surfaces of the third cycle

据图 5,响应曲面存在明显的起伏和卷曲,这是 由膜材力学参数的改变引起的.曲面的起伏和倾斜 是膜材的模量、泊松比等参数改变的外在表现.响应 曲面的起伏多变,反映出弹性常数在应力空间的分 布及膜材自身力学性质上的复杂性.基于上述响应 曲面,在应力空间上一点(σ_{x0}, σ_{y0})的邻域对称选 N 个数据点(σ_{xi}, σ_{yi})(i, j为序号),应用应变残差最小 二乘法,求得(σ_{x0}, σ_{y0})点处的弹性常数代表值 E_{ij} ($i, j = 1 \sim 4$).分区完毕后依次沿双向遍历所有应力 空间点,进而拟合可得膜材弹性参数的响应曲面.

3 弹性参数响应曲面分析

3.1 弹性模量高低分布特征

弹性模量在应力空间上的分布如图 6 所示.

据图 6 可知,弹性模量在所选应力空间内,分布 并不均匀,存在明显的起伏特征.在曲面上形成典型 的峰域和缓坡,陡缓之间的梯度差异很大,在峰域的 等值线分布密集,缓坡区域等值线分布稀疏.依据弹 性模量高低将空间划分为多个区域,如图 7 所示.

由图 7 可知,从趋势来看,经纬向弹性模量均随 所在向应力的增加而升高.从所处应力空间位置来 看,经纬峰域更接近于区域 B,该区域经向应力弱于 纬向应力;这表明经纬向刚度最大值并非出现在相 同应力水平的区域,这是因为经纬向纱线在编织几 何参数、卷曲程度、预应力水平等方面存在差异,纬 向纱线一般卷曲度高,可认为刚度稍"弱"于经纱.双 向受力下,经纬向高弹性模量的出现,应首先克服纬

b

纱的"弱"点,使纬纱受力稍高于经纱,二者的弹性模量才会同步处于高水平.低弹性模量区(区C),基本位于经纬向应力的低水平区域,显然在经纬向并不 对称,1:1对称轴右侧(纬向应力较大侧)的低弹性 模量区较大,经纬向弹性模量高低的分布特征根源 于膜材内在构成的差异性.

图 7 应力空间上的高低弹性模量分布特征 Fig. 7 The distribution characteristics of elastic modulus

3.2 经纬向弹性参数对照

经纬向弹性模量在变化趋势、分布特征上也存 在相似之处,表现出一定的同步特征.由图 8 可知, 1st 循环的弹性模量图,经纬向弹性模量从(0,0)点 出发,沿1:1(近纬向侧)方向爬升,当然同时经纬 向沿各自应力增大向爬升,形成了相似的峰域和缓 坡区域.因经向弹性模量大于纬向弹性模量,二者形 成上下交叉叠合的形状.

和弹性模量相比,经纬向泊松比的差异性较显 著(如图 8 所示).比如变化幅度,以第 1 循环为例, ν_s变化范围为 0.17~0.75,ν_ν,范围稍小为 0.20~ 0.50.此处大泊松比(>0.5)的出现反映了膜材经纬 向相互作用及变形机理的复杂性.

当然,2个泊松比在形状方面也存在一些相似 之处:二者均从(0,0)出发近似沿应力比1:1方向 下降,形成"V"形,如图8(c)所示.在近(0,0)应力点 处较大,应力比1:1方向最大应力点(σ_{xmax},σ_{ymax}) 处几乎最小.但整体上泊松比规律性不明显,变化趋 势不规律.

3.3 循环荷载影响

循环荷载的作用使弹性模量明显提高,第3循 环时平缓区域的弹性模量,经向在1500 kN/m 左 右,纬向在1200 kN/m 左右,显著大于第1循环的 平缓区域数值:经向1100 kN/m 左右,纬向900 kN/m 左右.峰域的分布也大有变化,第1循环时的 单峰,变成了第3循环的周边多峰特征(如图8(b)

所示).第3循环时,经纬向在3个区域出现峰域,高 弹性模量出现在经纬向应力均较大或仅一向大的区域.泊松比数值有所变化,虽然个别区域的数值较 大,但大部分区域的数值变得更均匀,中间区域的等 值线变得稀疏,泊松比随循环增加有趋稳特征.

3.4 应力空间分区特征

基于应力空间内的分析结果,提出弹性常数加 权计算法,对弹性常数响应曲面在应力空间内积分, 积分的加权均值作为相应范围的弹性常数.弹性常 数 $E_{mn}(m,n = 1,2)$ 的表达式为:

$$E_{mn} = \sum_{i=1}^{N} \frac{\iint_{D_{i}} W_{D_{i}} \cdot E_{ij}(\sigma_{x}, \sigma_{y}) d\sigma_{x} d\sigma_{y}}{\iint_{D} d\sigma_{x} d\sigma_{y}} .$$
(2)

式中: $E_{ij}(\sigma_x, \sigma_y)$ 为应力场 (σ_x, σ_y) 处的弹性常数; D_i 为第 i 组应力场(共 N 组); $W_{D_i} \leq 1$ 为应力场 D_i 的弹性常数权函数, 对应 D_i 应力场面积占总面积的 比重(见式(3)),其和满足 $\sum W_{D_i} = 1$.在工程结构 分析时, 权函数可依据应力场在膜面中的分布比例 来定.比如, 飞艇的主气囊结构, 膜面应力比基本处 于 1:2~2:1, 在此范围内权值建议取 0.6~0.8.

$$W_{D_i} = \frac{\iint\limits_{D_i} \mathrm{d}\sigma_x \,\mathrm{d}\sigma_y}{\sum_{i=1}^N \iint\limits_{D_i} \mathrm{d}\sigma_x \,\mathrm{d}\sigma_y} \,. \tag{3}$$

依据所提方法,将应力场进行分区处理,依次选 取 I ~ Ⅳ 及全域 V (分区如图 9 (a)所示)进行计算, 结果见表 2. 此处,所用权函数均为 1.

由表 2, V(图 9 (a))对应整个应力场的弹性参数数值,是整个试验加载范围内膜材的整体参数响应,从数值大小看,和前面章节中计算结果(见表 1)略有差异,但基本相当.但在沿着 1:1线的 4 组分区中,弹性常数差异显著.从趋势看, I ~ N 4 个分区,应力水平逐渐增加,膜材弹性模量也依次增加.

可见,应力水平的改变,可对膜材的弹性参数产生明 显影响,且应力水平增加可引起膜材刚度的增大.

表 2 双轴循环加载耦合弹性模量 Tab. 2 Elastic moduli of biaxial cycle tensile tests

循 环		弾性模量/(10 ² kN・m ⁻¹)		泊松比	
	区域	E_x	E_y	ν_x	ν_y
lst	Ι	8.13	6.97	0.37	0.42
	Π	13.62	10.60	0.23	0.28
	${\rm I\!I}$	18.70	12.17	0.12	0.19
	IV	18.92	12.40	0.12	0.19
	V	12.73	10.40	0.21	0.28
3rd	Ι	16.11	15.39	0.23	0.24
	Π	19.22	16.76	0.38	0.41
	${\rm I\!I}$	20.91	17.38	0.26	0.34
	IV	21.52	17.87	0.26	0.35
	V	16.84	15.76	0.25	0.29

依据应力比分区(如图 9(b)所示),弹性常数计 算结果如图 10 所示.据图 10,无论第 1 还是第 3 循 环,经纬弹性模量均表现出"X"型交叉特征.随名义 应力的增加,经向弹性模量以增大趋势为主,纬向弹 性模量以减小趋势为主.飞艇主气囊结构,应力比以 1:2~2:1为主,因此建议优先选取该比例范围的

图 10 膜材弹性模量随名义应力比的变化 Fig. 10 Influence of the normalized stress ratios on the elastic modului

弹性模量作为分析参数.在该应力比例范围时经纬

弹性模量第1循环分别为:1279和987 kN/m,第3 循环分别为:1627和1430 kN/m,计算结果和表1 相比,纬向稍大、经向稍小.当应力比扩大到1:3~ 3:1时,弹性模量有所改变,2个应力比范围的结果 均列于图10的椭圆圈内.与应力比范围1:2~2: 1相比,1:3~3:1范围内弹性模量约存在5%的 变化.

泊松比随名义应力比的变化结果如图 11 所示, 基本上呈现出中间凹两端高的特征. 经纬向应力相 差较大时,泊松比出现大于 0.5 的数值,表明经纬向 间存在显著的相互作用,同时说明蒙皮材料有别于 均质材料,泊松比变化范围较大.

图 11 膜材泊松比随名义应力比的变化 Fig. 11 Influence of the normalized stress ratios on the Poisson's ratio

应力空间加权均值法,可实现对不同应力水平 和应力比范围内的双轴拉伸弹性参数的计算和分 析;对具体结构或部件,依据其应力分布特征,针对 性地确定相应应力水平和应力比范围的弹性参数, 可提高结构计算分析的精确度.对于飞艇结构,可将 主(副)气囊、尾翼、吊屏等结构部件分别处理,依据 各自的应力分布特征,确定相应的弹性参数,并可按 应力比或应力水平所占比重,设定合理权值,进一步 提高所计算弹性参数的精确性和适用性.

4 非线性验证分析

基于 3.4 节弹性参数变化规律,进行膜材双轴 拉伸非线性分析,验证所提出的结论.模型基本假设 如下:

1) 材料性质满足正交异性的平面应力假设,在 特定应力比下,应力应变关系满足线弹性:

$$\begin{aligned} & \Delta \varepsilon_x \\ & \Delta \varepsilon_y \end{aligned} = \begin{bmatrix} \frac{1}{E_x(\gamma_y)} & \frac{-v_x}{E_y(\gamma_y)} \\ & \frac{-v_x}{E_y(\gamma_y)} & \frac{1}{E_y(\gamma_y)} \end{bmatrix} \begin{pmatrix} \Delta \sigma_x \\ \Delta \sigma_y \end{pmatrix}. \end{aligned}$$
(4)

2) 经纬向弹性模量 E_x 和 E_y 随名义应力比 γ_y 发生非线性变化,存在如下关系:

 $E_{x}(\gamma_{y}) = -a_{x}\gamma_{y}^{2} + b_{x}\gamma_{y} + E_{x(0,1\sim1,3)}$ $E_{y}(\gamma_{y}) = -a_{y}\gamma_{y}^{2} + b_{y}\gamma_{y} + E_{x(0,1\sim1,3)}$ (5)

 3) 泊松比ν_{xy} 随应力比的变化趋势不明显,认 为泊松比数值不变,以减小模型复杂性.

模型含有 7 个参数: a_x , b_x , a_y 和 b_y 为系数参数; $E_{x(0,1\sim1,3)}$ 和 $E_{y(0,1\sim1,3)}$ 为经纬向 0:1~1:3比例范围内,采用应力空间加权均值法计算出的弹性 模量; 泊松比 $\nu_x \in (0,0.5)$.上述模型参数可采用 模量残差平方和最小二乘法求取,模量残差平方和 最小值 Θ 表达式:

$$\Theta = \min(\sum_{i=1}^{m} \left[E_{x_{ij}}^{\text{mod}}(a_x, b_x, E_{x^{(0, 1 \sim 1, 3)}}, \mathbf{v}_x) - E_{x_i}^{\text{lest}}) \right]^2 + \left[E_{y_{ij}}^{\text{mod}}(a_y, b_y, E_{y^{(0, 1 \sim 1, 3)}}, \mathbf{v}_x) - E_{y_i}^{\text{lest}}(\mathbf{v}_x) \right]^2$$
(6)

式中: m 为应力比个数; $E_{x_{ij}}^{\text{mod}}$ () 和 $E_{x_{i}}^{\text{lest}}$ () 分别为模型和试验弹性模量结果,括号内为其参数; a_x , b_x , a_y , b_y 为系数参数; ν_x 为泊松比.依据式(6),编制相应程序求取参数,结果见表 3.

表 3 模型弹性常数结果(9个比例) Tab. 3 Estimated parameters based on nine stress ratios

a_x	b_x	a_y	b_y	v_x	$E_{x(0:1\sim1:3)}/E_{y(0:1\sim1:3)}$
806	1 763	746	1 915	0.22	890/1 340

运用有限元软件 Abaqus 的 UMAT 二次开发 技术,将上述本构模型应用于有限元数值分析.依据 材料试样尺寸,建立了相应的数值模型,该数值模型 采用四边形壳单元 S4R,模型单元数目 4 816.荷载 独立地加载于伸肢端部,以模拟所有应力比工况,图 12 所示为 1:1 和 1:3 加载时纬向应力应变关系.

图 12 应力应变关系试验与数值分析对比图 Fig. 12 The stress-strain relation of test data and finite element predictions

图 12 中,NL 模型为本文非线性模型,S 模型的 弹性参数为一组固定值. 据图 12,在应力比 1:1 时,NL 材料模型和 S 材料模型差异较小,均和试验 曲线接近. 但是在两肢应力差异较大时,NL 比 S 模 型具有更好的精确度. 这表明随名义应力比改变的 本构关系式在膜材应力应变预测上具有适用性,同 时证明了应力空间内弹性参数分析结论的科学性.

5 结 论

基于蒙皮材料的多比例双轴拉伸试验,获得了 材料在平面应力空间内的应变及弹性参数响应特 征.主要结论如下:

1) 芳纶聚酯类膜材正交互补系数均大于 1.0,
 基本上在 1.2~1.7 范围内.表明,正交互补性质应
 用于该膜材的弹性参数计算分析时适用性不足.

2)在应力空间上,经纬向弹性模量变化趋势的 相似度很大,经纬向均沿各自应力增大向爬升;主要 差异是弹性模量的数值和峰值域的位置.而随名义 应力比的增加,经向弹性模量以增大趋势为主,纬向 弹性模量以减小趋势为主,经纬弹性模量呈现出 "X"型交叉特征.

3) 经纬向泊松比差异性较显著,2个泊松比在 应力空间上,形成类似"V"形形状.泊松比存在大于 0.5的数值,表明蒙皮材料异于均质材料,反映了其 经纬向相互作用及变形机理的复杂性.

4)应力空间加权均值法,可实现对不同应力水 平和应力比范围弹性参数的计算和分析;可针对具体结构或部件,确定相应应力水平和应力比范围的 弹性参数,提高结构设计分析的精确度.

参考文献

[1] 甘晓华,郭颖. 飞艇技术概论[M]. 北京:国防工业出版社, 2005:15-36.

GAN Xiaohua, GUO Ying. Introduction to airship technology [M]. Beijing: National Defense Industry Press, 2005:15-36. (In Chinese)

- [2] 顾正铭.平流层飞艇蒙皮材料的研究[J]. 航天返回与遥感, 2007,28(1):62-66.
 GU Zhengming. Research of stratospheric airships' skin material[J]. Spacecraft Recovery & Remote Sensing, 2007,28(1): 62-66. (In Chinese)
- [3] KOMATSU K, SANO M A, KAKUTA Y. Development of high-specific-strength envelope materials[C]//Proceedings of the 3rd AIAA's Annual Aviation Technology, Integration, and Operations (ATIO) Tech. Washington, DC: American Institute of Aeronautics and Astronautics, 2003;6765-6771.
- [4] MASAAKI N, SHOJI M, TOYOTOSHI K. Investigation of long term weathering characteristics on high strength and light weight envelope material zylon[C]//Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Washington, DC: American Institute of Aeronautics and Astronautics, 2011: 6938-6945.
- [5] ZHAI H L, EULE A R. Material challenges for lighter-thanair systems in high altitude applications [C]//Proceedings of the 5th AIAA Aviation, Technology, Integration, and Operations Conference. Washington, DC: American Institute of Aeronautics and Astronautics, 2005; 7488-7501.
- [6] BRIDGENS B N, GOSLING P. A predictive fabric model for membrane structure design[J]. Textile Composite and Inflatable Structure II, 2008,67(2):35-50.
- [7] GALLIOT C, LUCHSINGER R H. Determination of the response of coated fabrics under biaxial stress: comparison between different test procedures[C]//The V International Conference on Textile Composites and Inflatable Structures-Structural Membranes. Barcelona; International Center for Numerical Methods in Engineering (CIMNE), 2011;273-280.
- [8] UHLEMANN J, STRANGHONER N, SCHMIDT H, et al.

Effects on elastic constants of technical membranes applying the evaluation methods of MSAJ/M-02-1995[C]//The V International Conference on Textile Composites and Inflatable Structures-Structural Membranes. Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 2011:220-229.

- [9] BLUM R, BOGNER B. Evaluation method for the elastic moduli [EB/OL]. (2002-9-1)[2014-10-1]. http://www.tensinet.com/files/TensiNetPublications/TensiNews3_2002_09-1. pdf.
- [10] ZHANG Y, ZHANG Q, LV H. Mechanical properties of polyvinylchloride-coated fabrics processed with Precontraint technology[J]. Journal of Reinforced Plastics and Composites, 2012, 31(23): 1670-1684.
- [11] 陈建稳,陈务军,赵兵.浮空器膜材循环拉伸力学性能及弹性 常数研究[J].湖南大学学报:自然科学版,2013,40(6):40-46.

CHEN Jianwen, CHEN Wujun, ZHAO Bing. Study of the mechanical properties and elastic constants of aerostat envelope fabric under cyclic tensile loading[J]. Journal of Hunan University: Natural Sciences, 2013,40(6):40-46. (In Chinese)

 [12] 易洪雷,丁辛,陈守辉.建筑膜材料双轴向拉伸弹性常数的估算 方法[J].工程力学,2006,23(10):180-184.
 YI Honglei, DING Xin, CHEN Shouhui. Estimation of the elastic constants of architectural membrane under bi-axial ten-

sile loading[J]. Enginering Mechanics, 2006, 23(10): 180-184. (In Chinese)

- [13] 罗仁安,华凌,倪静,等.建筑 PVC 膜材双轴正交拉伸循环试验[J].上海大学学报,2009,15(6):615-621.
 LUO Renan, HUA Ling, NI Jing, et al. Cyclic test of architectural PVC membrane materials under biaxialorthogonal tensile loads[J]. Journal of Shanghai University, 2009, 15(6):615-621. (In Chinese)
- [14] 张营营,倪佳女,张其林.涂层织物类建筑膜材料的设计强度研究[J].湖南大学学报:自然科学版,2011,38(12):19-24.

ZHANG Yingying, NI Jianv, ZHANG Qilin. Research on the design strength of architectural coated fabrics[J]. Journal of Hunan University: Natural Sciences, 2011, 38(12): 19-24. (In Chinese)

- [15] FORSTER B, MOLLAERT M. European design guide for tensile surface structures [M]. Frankfurt: Tensinet, 2004: 101-119.
- [16] BRIDGENS B N, GOSLING P D. Direct stress-strain representation for coated woven fabrics[J]. Computers & Structures, 2004, 82(23): 1913-1927.
- [17] ZHAI H L, EULE A R. Material challenges for lighter-thanair systems in high altitude applications [C]//Proceedings of the 5th AIAA Aviation, Technology, Integration, and Operations Conference (ATIO). Arlington: American Institute of Aeronautics and Astronautics, 2005;7488-7501.
- [18] AMBROZIAK A, KLOSOWSKI P. Mechanical properties for preliminary design of structures made from PVC coated fabrics
 [J]. Construction and Building Materials, 2014, 50:74-81.
- [19] BRIDGENS B N, GOSLING P D, BIRCHALL M J S. Tensile fabric structures: concepts, practice & developments[J]. The Structural Engineer, 2004, 82(14): 21-27.
- [20] CHEN S, DING X, FANGUEIRO R, et al. Tensile behavior of PVC-coated woven membrane materials under uni- and biaxial loads [J]. Journal of Applied Polymer Science, 2008, 107(3): 2038-2044.
- [21] MSAJ/M-02-1995 Testing method for elastic constants of membrane materials[S]. Japan: Membrane Structures Association of Japan, 1995:1-36.
- [22] GOSLING P D, BRIDGENS B N. Material testing & computational mechanics—a new philosophy for architectural fabrics
 [J]. International Journal of Space Structures, 2008, 23: 215—232.
- [23] BRIDGENS B N, GOSLING P, JOU G T, et al. Inter-laboratory comparison of biaxial tests for architectural textiles[J]. Journal of the Textile Institute,2012, 103(7): 706-718.