文章编号:1674-2974(2022)02-0143-06

DOI:10.16339/j.cnki.hdxbzkb.2022223

# 混合电力线-自由空间光通信系统解码 转发协议下的性能分析

张捷1,陈生海2+,赵闻1,黄友朋1,蒋鑫伟3,杨亮2

(1. 广东电网有限责任公司计量中心,广东广州 510000;

2. 湖南大学信息科学与工程学院,湖南长沙410082;

3. 威胜信息技术股份有限公司,湖南长沙410000)

摘 要:针对电力线通信传播距离短问题,文章提出了基于解码转发中继的电力线-自由 空间光(PLC/FSO)混合通信系统,并对其性能进行了分析.首先建立了混合系统的数学模型, 分别采用对数正态分布和Gamma-Gamma分布来表征PLC及FSO信道衰落,并考虑FSO链路 指向误差.其次,对混合系统性能进行了分析,推导出了中断概率、误码率和信道容量的闭合 表达式.最后,利用计算机模拟仿真验证了推导结果的准确性.研究结果表明:脉冲噪声、大气 湍流和指向误差会对通信系统产生一定的影响.

**关键词**: 电力线通信; 自由空间光通信; 解码转发; 性能分析 中图分类号: TN971 **文献标志码**: A

# Performance Analysis of Mixed PLC/FSO Communication Systems

ZHANG Jie<sup>1</sup>, CHEN Shenghai<sup>2†</sup>, ZHAO Wen<sup>1</sup>, HUANG Youpeng<sup>1</sup>, JIANG Xinwei<sup>3</sup>, YANG Liang<sup>2</sup>

(1. Measurement Center of Guangdong Power grid Co Ltd, Guangzhou 510080, China;

College of Information Science and Engineering, Hunan University, Changsha 410082, China;
 Willfar Information Technology Co Ltd, Changsha 410205, China)

o. winnar morniarion reenhology do Ela, enangena (10200, enina)

**Abstract**: Due to the short transmission distance of power line communication, a mixed power line and freespace optical (PLC/FSO) communication system with the decode and forward protocol is studied. First, the mathematical models for the mixed system is established by assuming the PLC and the FSO channels following the lognormal and Gamma-Gamma distributions, respectively, where the pointing error in the FSO link is also considered. Then, closed-form expressions for the outage probability, bit error rate, and the channel capacity are derived. Finally, simulation results are provided to verify our analytical results. Numerical results show that impulsive noise, turbulence, and the pointing error affect the system performance.

Key words: power line communication; free-space optical communication; decode and forward; performance analysis

<sup>\*</sup> 收稿日期:2021-06-29

基金项目:国家自然科学基金资助项目(61671160), National Natural Science Foundation of China(61671160);中国南方电网有限责任公司科技项目(GDKJXM20185366), Science and Technology Project of China Southern Power Grid Co.Ltd(GDKJXM20185366) 作者简介:张捷(1987—),男,湖南岳阳人,广东电网高级工程师

<sup>;</sup>通信联系人,E-mail:chenshenghai89@hnu.edu.cn

电力线通信(Power Line Communication, PLC) 可以利用建筑中已有的电力线网络,不需要部署新 的线路,建设成本较低,且信号传输不易受到建筑等 环境因素的影响<sup>[1]</sup>.与其他通信方式相比,PLC具有 覆盖范围广、连接方便等特点,从而使其成为用于室 内和室外通信的新技术. 文献 [2] 提出了一种载波信 号在混合型配电网络中的信道建模方法. 文献[3]研 究了多跳中继宽带电力线通信网络中的OFDM跨层 资源分配方法.此外,PLC已成为智能电网中主要通 信技术方法之一[4-5].由于电力线通信信道衰减较 大,从而无法实现远距离通信,基于此,已有文献提 出采用中继来增加PLC链路传输距离,如:PLC-PLC、PLC-无线(Radio Frequency, RF)和 PLC-可见 光(Visible Light Communication, VLC)中继方案<sup>[6-8]</sup>. 文献[6] 提出了一种解码转发(Decode-and-Forward, DF)协议下的多跳电力线通信系统,并对系 统端到端的平均误码率、信道容量和中断概率进行 了分析. 文献 [7] 提出了自适应中继协议下电力线和 无线双媒质通信系统,文章所提自适应中继算法在 不增加系统复杂度的前提下,可以获得最佳的通信 质量. 文献 [8] 研究了在 DF 协议下双跳混合 PLC-VLC 通信系统,并对该系统的中断概率和误码率进 行了理论分析和仿真验证.

近年来,自由空间光(Free Space Optical, FSO) 通信系统作为一种安全和高带宽的通信技术受到了 通信行业研究人员的广泛关注<sup>[9]</sup>.相比于无线射频 通信,FSO具有安装便捷、功耗低、非授权频谱的独 特优势.另外,PLC链路和FSO操作在不同的频段, 从而不存在干扰问题.但是由于大气湍流影响,FSO 只能提供短距离传输.此外,FSO通信的可靠性会受 到云、雾和雪等天气条件的影响.中继通信系统可有 效解决上述问题,目前关于FSO中继协作通信系统 研究成果颇多<sup>[10-13]</sup>.

然而,目前尚未有文献研究PLC与FSO之间的 协作通信.本文提出了在DF中继协议下的PLC/FSO 混合通信系统,并对系统中断概率、误码率和信道容 量进行了分析.同时仿真验证了关键参数对系统性 能的影响.

#### 1 系统模型

文章研究了一个解码转发协议下的PLC/FSO系统,包括一个源节点(S),一个带有FSO发送器的中继节点(R)和一个具有FSO检测器的目标节点(D),

具体系统模型如图1所示.信号源S在T<sub>1</sub>时隙通过 PLC链路将数据发送至中继R,中继R运用DF协议 对接收到的数据进行解码,并使用光电探测器将电 信号转换为光信号,再通过FSO发射器发送.光信号 在T<sub>2</sub>时隙通过FSO链路传送到带有FSO探测器的接 收端D.假设S和R之间没有直接链路,并且每个收发 器节点都配备了用于FSO链路发送和检测的光圈.



#### 1.1 PLC链路

数据 x 经过调制后在  $T_1$ 时隙通过电力线传送至 R. 因此, R 处接收到的信号为  $y_{\text{SR}} = h_{\text{SR}}x + n_{\text{SR}}$ ,其中,  $h_{\text{SR}}$ 是信道衰落系数,  $n_{\text{SR}}$ 表示信道附加噪声.通常使 用对数正态分布对  $h_{\text{SR}}$ 进行建模,其概率密度函数 (Probability Densinity Function, PDF)为  $f_{h_{\text{SR}}}(h_{\text{SR}}) =$  $1/h_{\text{SR}}\sqrt{2\pi\sigma_{\text{SR}}^2}\exp\left(-\left(\ln(h_{\text{SR}}) - \mu_{\text{SR}}\right)^2/2\sigma_{\text{SR}}^2\right)$ ,其中 $\sigma_{\text{SR}}^2$ 和 $\mu_{\text{SR}}$ 分别表示  $\ln(h_{\text{SR}})$ 的方差和均值<sup>[14]</sup>.本文考虑家 庭智能设备通过低压 PLC链路接入宽带网络场景, 由于 PLC链路中连接电缆的低功率组件和电气设备

的随机瞬态切换,除了背景噪声对系统的影响外,还 需考虑脉冲噪声的影响.在此情形下,采用泊松-高 斯混合统计对噪声进行建模<sup>[14]</sup>.因此,PLC链路的噪 声可以表示为 $n_{sR} = n_b + n_i n_p$ ,其中 $n_b$ 是背景噪声,建 模为均值为零和方差为 $\sigma_b^2$ 的高斯白噪声. $n_i n_p$ 为脉 冲噪声,其中 $n_p$ 为每秒中脉冲出现的次数,它服从泊 松分布, $n_i$ 为均值为零且方差为 $\sigma_i^2$ 的高斯白噪声.

脉冲噪声并不存在于整个 $T_1$ 时隙内.因此,当 PLC链路中只有背景噪声时,PLC链路的瞬时信噪比  $\gamma_{SR1} = E_b |h_{SR}|^2 / \sigma_b^2 = \bar{\gamma}_{SR1} |h_{SR}|^2$ ,其中, $\bar{\gamma}_{SR1}$ 表示仅有 背景噪声时PLC链路的平均信噪比, $E_b$ 表示信号的 平均能量<sup>[14]</sup>.同样,当脉冲噪声和背景噪声同时出现 在 PLC链路中时,瞬时信噪比 $\gamma_{SR2} = E_b |h_{SR}|^2 / \sigma_b^2 (1 + \eta) = \bar{\gamma}_{SR2} |h_{SR}|^2$ ,其中, $\bar{\gamma}_{SR2}$ 表示 PLC链路同时存在脉 冲噪声和背景噪声时的平均信噪比, $\eta = \sigma_i^2 / \sigma_b^2$ 为脉 冲噪声比参数<sup>[14]</sup>. 结合上述两种情况,可得 PLC 链路 信噪比 $\gamma_{sr} = E_b | h_{sr} |^2 / N_{0,p}$ ,其中 $N_{0,p}$ 为 $\sigma_b^2$ 或 $\sigma_b^2 (1 + \eta)$ .从而 $\gamma_{sr}$ 的概率密度函数可以表示为<sup>[14]</sup>

$$f_{\gamma_{\rm SR}}(\boldsymbol{\gamma}) = \left(1 - U_i\right) \left(\frac{m_1}{\Omega_1}\right)^{m_1} \frac{\boldsymbol{\gamma}^{m_1 - 1}}{\Gamma(m_1)} \exp\left(-\frac{m_1}{\Omega_1}\boldsymbol{\gamma}\right)$$
$$+ U_i \left(\frac{m_2}{\Omega_2}\right)^{m_2} \frac{\boldsymbol{\gamma}^{m_2 - 1}}{\Gamma(m_2)} \exp\left(-\frac{m_2}{\Omega_2}\boldsymbol{\gamma}\right)$$

(1)

其中, $U_i = \lambda Z_i$ 为脉冲噪声到达的概率, $\lambda$ 是脉冲噪 声到达的速率, $Z_i$ 是脉冲噪声持续时间. $m_1 \alpha m_2 \beta$ Gamma 分布 PDF 中的阴影程度参数, $\Omega_1 \alpha \Omega_2 \beta$ Gamma 分布 PDF 中的阴影区域的平均功率, $\Gamma(\cdot)$ 是伽 玛函数<sup>[15]</sup>.其中 $m_1 \alpha m_2$ 的值取决于 $\mu_{sR}$ , 而 $\Omega_1 \alpha \Omega_2$ 的值与 $\mu_{sR}$ , $\bar{\gamma}_{sR1} \alpha \bar{\gamma}_{sR2}$ 有关系.

因此, $\gamma_{sR}$ 的累积分布函数(Cumulative Distribution Function, CDF)为<sup>[14]</sup>

$$F_{\gamma_{\text{SR}}}(\gamma) = (1 - U_i) \left( \frac{1}{\Gamma(m_1)} G_{1,2}^{1,1} \left[ \frac{m_1}{\Omega_1} \gamma \Big| \frac{1}{m_1, 0} \right] \right)$$

$$+ U_i \left( \frac{1}{\Gamma(m_2)} G_{1,2}^{1,1} \left[ \frac{m_2}{\Omega_2} \gamma \Big| \frac{1}{m_2, 0} \right] \right)$$
(2)

其中, $G_{p,q}^{m,n}$ [ · ]为Meijer-G函数<sup>[15]</sup>.

#### 1.2 FSO链路

在 $T_2$ 时隙,中继R首先使用DF协议将信号进行 解码,再由光电探测器将数据转换为光信号后通过 FSO发送器传送到接收端.从而,接收端D处的信号 为 $y_{RD} = \sqrt{P_R} h_{RD} \hat{x} + n_{RD}$ ,其中 $P_R$ 是D处的平均发射 功率, $\hat{x}$ 为中继解码后的光信号, $n_{RD}$ 表示均值为零且 方差为N的高斯白噪声, $h_{RD}$ 表示FSO信道系数.  $h_{RD} = h_a h_l h_p$ ,其中 $h_a$ 表示服从Gamma-Gamma分布 的大气湍流的影响因子, $h_l = \exp(-\sigma L)$ 是由衰减系 数 $\sigma$ 和激光距离L确定的路损常数, $h_p$ 表示指向误差 影响因子.

根据文献[16], 
$$h_p \approx A \exp(-\frac{2r^2}{w_z^2})$$
, 其中  $A =$ 

erf<sup>2</sup>(v), v =  $\frac{\sqrt{\pi} a}{\sqrt{2} w}$ , 为孔径半径 a 和束腰直径 w 之比,

 $w_{z}^{2} = \frac{w^{2}\sqrt{\pi} \operatorname{erf}(v)}{2v \exp(-v^{2})}, r \neq D$ 处的径向位移.FSO信道的 瞬时信噪比(Signal-to-Noise, SNR)为  $\gamma_{RD} = \frac{P_{R}h_{i}^{2}h_{i}^{2}h_{p}^{2}}{N} = \bar{\gamma}_{RD}h_{i}^{2}h_{i}^{2}h_{p}^{2}, 其中 \bar{\gamma}_{RD} 表示 FSO 链路的平均$  SNR. 信噪比γ<sub>RD</sub>的 PDF 和 CDF 为<sup>[16]</sup>

$$f_{\gamma_{\rm RD}}(\gamma) = \frac{\xi^2}{2x\Gamma(\alpha)\Gamma(\beta)} G_{1,3}^{3,0} \left[ \frac{\alpha\beta}{A} \sqrt{\frac{\gamma}{\bar{\gamma}_{\rm RD}}} \left| \frac{\xi^2 + 1}{\xi^2, \alpha, \beta} \right]$$

$$(3)$$

$$F_{\gamma_{\rm RD}}(\gamma) = \frac{\xi^2}{\Gamma(\alpha)\Gamma(\beta)} G_{2,4}^{3,1} \left[ \frac{\alpha\beta}{A} \sqrt{\frac{\gamma}{\bar{\gamma}_{\rm RD}}} \left| \frac{1, \xi^2 + 1}{\xi^2, \alpha, \beta} \right]$$

$$(4)$$

其中, $\xi = \frac{w_z}{2\sigma_s}$ 是等效光束半径 $w_z$ 与指向误差位移标 准偏差 $\sigma_s$ 之间的比值.其中,

$$\begin{split} \alpha &= \left[ \exp \left[ \frac{0.49\sigma_{\rm R}^2}{\left( 1 + 0.18\kappa^2 + 0.56\sigma_{\rm R}^{\frac{12}{5}} \right)^{\frac{7}{6}}} - 1 \right] \right]^{-1}, \\ \beta &= \left[ \exp \left[ \frac{0.51\sigma_{\rm R}^2 \left( 1 + 0.69\sigma_{\rm R}^{\frac{12}{5}} \right)^{-\frac{5}{6}}}{\left( 1 + 0.9\kappa^2 + 0.62\kappa^2\sigma_{\rm R}^{\frac{12}{5}} \right)^{\frac{5}{6}}} \right] - 1 \right]^{-1} \not\equiv \text{th t}$$

条件决定.  $\kappa^2 = k_w D_a^2 / (4L)$ ,  $\sigma_R^2 = 0.5 C_a^2 k_w^{\frac{7}{6}} L^{\frac{11}{6}}$ ,  $k_w = 2\pi/\lambda_w$ 为光波数,  $D_a = 2a$  是接收机孔径的直径,  $\lambda_w$ 是 波长,  $C_a^2$ 是湍流强度决定的折射结构参数中受高度 影响的系数.

### 2 性能分析

#### 2.1 中断概率分析

根据式(2)和(4),系统中断概率为  

$$P_{out} = \Pr\left(\min(\gamma_{SR}, \gamma_{RD}) < \gamma_{th}\right) = F_{\gamma_{SR}}(\gamma_{th}) + F_{\gamma_{RD}}(\gamma_{th}) -$$

$$F_{\gamma_{SR}}(\gamma_{th})F_{\gamma_{RD}}(\gamma_{th}) = (1 - U_{i})\left(\frac{1}{\Gamma(m_{1})}G_{1,2}^{1,1}\left[\frac{m_{1}}{\Omega_{1}}\gamma_{th}\left|\frac{1}{m_{1}},0\right]\right] +$$

$$U_{i}\left(\frac{1}{\Gamma(m_{2})}G_{1,2}^{1,1}\left[\frac{m_{2}}{\Omega_{2}}\gamma_{th}\left|\frac{1}{m_{2}},0\right]\right] + \frac{\xi^{2}}{\Gamma(\alpha)\Gamma(\beta)}G_{2,4}^{3,1}\left[\frac{\alpha\beta}{A}\sqrt{\frac{\gamma_{th}}{\overline{\gamma}_{RD}}}\left|\frac{1,\xi^{2}+1}{\xi^{2},\alpha,\beta}\right] -$$

$$\left((1 - U_{i})\left(\frac{1}{\Gamma(m_{1})}G_{1,2}^{1,1}\left[\frac{m_{1}}{\Omega_{1}}\gamma_{th}\left|\frac{1}{m_{1}},0\right]\right] +$$

$$U_{i}\left(\frac{1}{\Gamma(m_{2})}G_{1,2}^{1,1}\left[\frac{m_{2}}{\Omega_{2}}\gamma_{th}\left|\frac{1}{m_{2}},0\right]\right]\right) * \frac{\xi^{2}}{\Gamma(\alpha)\Gamma(\beta)}G_{2,4}^{3,1}\left[\frac{\alpha\beta}{A}\sqrt{\frac{\gamma_{th}}{\overline{\gamma}_{RD}}}\left|\frac{1,\xi^{2}+1}{\xi^{2},\alpha,\beta}\right]$$

$$(5)$$

为了更好的分析系统的中断概率性能,进一步 给出中断概率渐近分析.在高 SNR 情况下,式(5)中 的最后一项可以忽略.应用 Meijer-G 函数的渐近级 数展开[17, Eq.(07.34.06.0040.01)],如下所示:

$$G_{p,q}^{m,n} \left[ z \left| \begin{matrix} a_1, ..., a_n, a_{n+1}, ..., a_p \\ b_1, ..., b_m, b_{m+1}, ..., b_q \end{matrix} \right] \rightarrow \prod_{k=1}^{m} \Gamma(b_j - b_k) \prod_{j=1}^{n} \Gamma(1 - a_j + b_k) \prod_{j=k+1}^{m} \Gamma(a_j - b_k) \prod_{j=m+1}^{n} \Gamma(1 - b_j + b_k) z^{b_k} \right]$$

从而中断概率可以渐近成为,

$$P_{\text{out}} \approx (1 - U_i) \frac{\left(\frac{m_1 \gamma_{\text{th}}}{\Omega_1}\right)^{m_1}}{\Gamma(1 + m_1)} + U_i \frac{\left(\frac{m_2 \gamma_{\text{th}}}{\Omega_2}\right)^{m_2}}{\Gamma(1 + m_2)} + \frac{\xi^2}{\Gamma(\alpha)\Gamma(\beta)}$$
$$\times \sum_{k=1}^3 \frac{\prod_{j=1, j \neq k}^3 \Gamma(b_j - b_k) \Gamma(b_k)}{\Gamma(\xi^2 + 1 - b_k) \Gamma(1 + b_k)} \left(\frac{\alpha \beta \sqrt{\gamma_{\text{th}}}}{A \sqrt{\gamma_{\text{RD}}}}\right)^{b_k}$$
(6)

其中,  $b_k = \{\xi^2, \alpha, \beta\}$ . 由式(6)可知, 当两端的平均 SNR均趋向于无穷时, 分集度 $d = -\lim_{\rho \to \infty} \frac{\log(P_{out})}{\log(\rho)} =$ min $\left\{m_1, m_2, \frac{b_k}{2}\right\} = \min\left\{m_1, m_2, \frac{\xi^2}{2}, \frac{\alpha}{2}, \frac{\beta}{2}\right\}$ , 说明系统分集度是由 $m_1, m_2, \frac{\xi^2}{2}, \frac{\alpha}{2}$ 和 $\frac{\beta}{2}$ 中的最小值确定.

#### 2.2 平均误码率分析

系统平均误码率可以写为 $P_{\text{BER}} = P_1 + P_2 - 2P_1P_2$ ,其中 $P_1$ 和 $P_2$ 分别是 PLC 链路和 FSO 链路的 平均 BER.此外,二进制调制的平均误码率通用表达 式为 $P_b = \frac{q^p}{2\Gamma(p)} \int_0^\infty \exp(-q\gamma)\gamma^{q-1}F_{\gamma}(\gamma)d\gamma$ ,其中p和q是针对具体不同调制方式而变化的参数<sup>[14]</sup>.p和q的 值取决于所考虑的调制方式.

考虑使用DBPSK方案(即p = 1, q = 1).因此, $P_1$ 和 $P_2$ 分别为

$$P_{1} = \frac{1}{2\Gamma(1)} \int_{0}^{\infty} \exp(-\gamma) \left( (1 - U_{i}) \left( \frac{1}{\Gamma(m_{1})} G_{1,2}^{1,1} \left[ \frac{m_{1}}{\Omega_{1}} \gamma \Big| \frac{1}{m_{1}, 0} \right] \right) + U_{i} \left( \frac{1}{\Gamma(m_{2})} G_{1,2}^{1,1} \left[ \frac{m_{2}}{\Omega_{2}} \gamma \Big| \frac{1}{m_{2}, 0} \right] \right) \right) d\gamma = \frac{1 - U_{i}}{2\Gamma(m_{1})} G_{2,2}^{1,2} \left[ \frac{m_{1}}{\Omega_{1}} \Big| \frac{0, 1}{m_{1}, 0} \right] + \frac{U_{i}}{2\Gamma(m_{2})} G_{2,2}^{1,2} \left[ \frac{m_{2}}{\Omega_{2}} \Big| \frac{0, 1}{m_{2}, 0} \right]$$
(7)

$$P_{2} = \frac{1}{2\Gamma(1)} \int_{0}^{\infty} \exp(-\gamma) \frac{\xi^{2}}{\Gamma(\alpha)\Gamma(\beta)} G_{2,4}^{3,1} \left[ \frac{\alpha\beta}{A} \sqrt{\frac{\gamma}{\bar{\gamma}_{RD}}} \left| \begin{array}{c} 1, \xi^{2} + 1 \\ \xi^{2}, \alpha, \beta \end{array} \right] d\gamma$$
$$= \frac{2^{\alpha+\beta-4} \xi^{2}}{\pi\Gamma(\alpha)\Gamma(\beta)} G_{5,8}^{6,3} \left[ \frac{\alpha^{2}\beta^{2}}{16A^{2}\bar{\gamma}_{RD}} \left| \begin{array}{c} 0, \frac{1}{2}, 1, \frac{1+\xi^{2}}{2}, \frac{2+\xi^{2}}{2} \\ \rho_{1} \end{array} \right] \right]$$
(8)

其中, $\rho_1 = \left\{ \frac{\xi^2}{2}, \frac{1+\xi^2}{2}, \frac{\alpha}{2}, \frac{1+\alpha}{2}, \frac{\beta}{2}, \frac{1+\beta}{2}, 0, \frac{1}{2} \right\}.$ 由(7)、(8)可得系统平均误码率的表达式.在高信噪 比时,系统平均误码率可渐近为 $P_{\text{BER}} \approx P_1 + P_2.$ 

## 2.3 系统容量分析

系统容量为 $C = \frac{1}{2} \min \left[ \mathbb{E} \{ C_{\text{SR}} \}, \mathbb{E} \{ C_{\text{RD}} \} \right],$ 其中  $\mathbb{E} \{ C_{\text{SR}} \}$ 和  $\mathbb{E} \{ C_{\text{RD}} \}$ 分别是 PLC 链路和 FSO 链路的信道 容量.通过使用  $\ln(1 + \gamma) = G_{2,2}^{1,2} \left[ \gamma |_{1,0}^{1,1} \right] [17, \text{Eq.}$  (01.04.26.0003.01)]和  $\exp(-bz) = G_{0,1}^{1,0} \left[ bz |_{0}^{-} \right] [17, \text{Eq.}$  (07.34.21.0013.01)],  $\mathbb{E} \{ C_{\text{SR}} \}$ 和  $\mathbb{E} \{ C_{\text{RD}} \}$ 的表达式分 別为

$$\mathbb{E}\left\{C_{\rm SR}\right\} = \frac{1}{\ln(2)} \int_{0}^{\infty} \ln(1+\gamma) f_{\gamma_{\rm SR}}(\gamma) d\gamma$$

$$= \frac{(1-U_{i}) \left(\frac{m_{1}}{\Omega_{1}}\right)^{m_{1}}}{\Gamma(m_{1}) \ln(2)} G_{2,3}^{3,1} \left[\frac{m_{1}}{\Omega_{1}}\right|^{-m_{1},1-m_{1}} \left[0,-m_{1},-m_{1}\right]$$

$$= \frac{U_{i} \left(\frac{m_{2}}{\Omega_{2}}\right)^{m_{2}}}{\Gamma(m_{2}) \ln(2)} G_{2,3}^{3,1} \left[\frac{m_{2}}{\Omega_{2}}\right|^{-m_{2},1-m_{2}} \left[0,-m_{2},-m_{2}\right]$$
(9)
$$\mathbb{E}\left\{C_{\rm RD}\right\} = \frac{1}{\ln(2)} \int_{0}^{\infty} \ln(1+\gamma) f_{\gamma_{\rm RD}}(\gamma) d\gamma$$

$$=\frac{\xi^{2}2^{\alpha+\beta-3}}{\pi\Gamma(\alpha)\Gamma(\beta)\ln(2)}G_{3.7}^{7,1}\left[\frac{\alpha^{2}\beta^{2}}{16A^{2}\bar{\gamma}_{RD}}\left|0,1,\frac{\xi^{2}+2}{2}\right]\right]$$
(10)

其中, $\rho_2 = \left\{\frac{\xi^2}{2}, \frac{\alpha}{2}, \frac{1+\alpha}{2}, \frac{\beta}{2}, \frac{1+\beta}{2}, 0, 0\right\}$ .因此,通 过将式(9)和(10)代入 $C = \frac{1}{2}\min\left[\mathbb{E}\left\{C_{sR}\right\}, \mathbb{E}\left\{C_{RD}\right\}\right]$ , 可得系统信道容量.

#### 3 数值仿真分析

在本节中,通过具体数值分析来说明在上一节

中推导出的解析表达式.此外,利用蒙特卡洛仿真 验证了推导结果的准确性.根据文献[14]和[16], 系统参数设置如下: $m_1 = m_2 = 8, U_i = 0.05, \eta = 15,$  $\sigma_{sR} = 0.23, h_i = 1, \sigma_s = 0.3, a = 2.5, \gamma_{th} = 0 \text{ dB}, \bar{\gamma}_{sR} = \bar{\gamma}_{RD} = \bar{\gamma}.$ 

图 2 为参数( $\alpha, \beta, \xi$ ) 三组不同取值(5.91, 4.32, 8.86),(4.60, 2.83, 8.02),(4.08, 1.48, 7.37)时系统的 中断概率.从图 2 中可以看出,随着  $\alpha$  和 $\beta$ 值的增加, 系统中断概率性能得以提升.通常用闪烁指数大小 来量化由大气湍流引起的波动影响程度,它定义为  $\sigma_I^2 = E\{I^2\}/E\{I\}^2 - 1,其中I是接收到的光波的强$  $度,E{}表示期望值,<math>\sigma_I^2$ 值越大表示波动越强.且闪 烁指数与Gamma-Gamma分布中的大尺度湍流参数  $\alpha$  和小尺度湍流参数 $\beta$ 的关系为 $\sigma_I^2 = (1/\alpha) + (1/\beta) + (1/\alpha\beta)^{[9]}$ .由此可见, $\beta$ 的值越大,意味着大气湍流强 度越低,从而对系统性能的影响越小.另一方面,图 2显示渐近 $P_{out}$ 值在高 SNR时收敛于精确 $P_{out}$ 值.同 时,可以注意到曲线的斜率随湍流条件变化而变

化,这验证了分集度  $d = \min\left\{m_1, m_2, \frac{\xi^2}{2}, \frac{\alpha}{2}, \frac{\beta}{2}\right\}$ 的

正确性. 10°



Fig.2 Outage probability for different values of  $\alpha$ ,  $\beta$ ,  $\xi$ 

图 3 给出了双跳混合 PLC/FSO 系统和单一 PLC 系统中断概率对比图.由图 3 可知,本文提出的混合 系统的中断概率性能优于单一 PLC 系统.这是因为 PLC 通信衰减较大,从而导致传播距离有限,通过中 继方式可有效增加系统传播距离.同时从图 3 可见, 系统的中断概率随着 PLC 信道中脉冲概率的降低而 减小.

图4比较了在不同大气湍流条件下系统的平均

BER,即分别取参数( $\alpha$ , $\beta$ )为(8.23,6.72)(弱湍流)、 (4.54,2.76)(中度湍流)、(3.99,1.70)(强湍流).由图 4可知,( $\alpha$ , $\beta$ )的取值越大,系统的平均BER越低.原 因是,( $\alpha$ , $\beta$ )的值越大,意味着大气湍流越弱,从而对 系统性能的影响就越小.另一方面,图4还揭示了渐 近和精确的平均误码率表达式之间的收敛性.



图 3 PLC/FSO 混合系统和单一PLC 系统中断概率 Fig.3 Outage probability of mixed PLC/FSO system and single PLC system

![](_page_4_Figure_13.jpeg)

图 5 为在不同的取值情况下系统的信道容量. PLC链路的平均信噪比 γ<sub>sr</sub>分别固定为 20 dB、13 dB 和 6 dB.可以观察到信道容量 C随着平均信噪比 γ<sub>sr</sub> 增大增大.此外,由于信道容量主要取决于 PLC链 路,因此 C 在高信噪比时逐渐趋于常数.因此,由图 5 可以看出,随着参数 U<sub>i</sub>或η的减少,系统会有更高的 信道容量.

![](_page_5_Figure_3.jpeg)

Fig.5 Channel capacity for various values of  $U_i$ ,  $\eta$  and  $\overline{\gamma}_{sp}$ 

#### 4 结 论

本文研究了PLC/FSO通信系统解码转发协议下的相关性能.得出了中断概率、平均误码率和信道容量的闭式表达式,同时给出了中断概率和信道容量渐近分析的表达式,并利用蒙特卡洛仿真验证了推导结果的准确性.同时,还分析了脉冲噪声、大气湍流强度和指向误差对系统性能的影响,结果显示,在信噪比为35dB时,弱湍流条件下的中断概率为强湍流条件下1/10;在信噪比为15dB时,弱湍流条件下的中断概率为强湍流条件下1/10;信道容量随着脉冲噪声的减少而增加.

#### 参考文献

- [1] 刘晓胜,崔莹,徐殿国. 低压电力线通信组网性能优化方法
   [J]. 电力自动化设备,2017,37(12):16-21.
   LIU X S, CUI Y, XU D G. Performance optimization for low voltage power line communication [J]. Electric Power Automation Equipment,2017,37(12):16-21.(In Chinese)
- [2] 王艳,王阳,赵洪山,等. 中压配电网电力线载波通信信道建模
  [J]. 电力系统保护与控制,2021,49(8):50-57.
  WANG Y, WANG Y, ZHAO H S, et al. Channel modeling of power line communication in a medium voltage distribution network[J]. Power System Protection and Control,2021,49(8):50-57.(In Chinese)
- [3] 史建超,谢志远,胡正伟,等. 多跳中继宽带电力线通信网络中的OFDM 跨层资源分配[J]. 电力系统保护与控制,2021,49 (5):58-66.

SHI J C, XIE Z Y, HU Z W, *et al.* OFDM cross layer resource allocation in multi-relay broadband power line communication networks [J]. Power System Protection and Control, 2021, 49(5): 58-66. (In Chinese)

- [4] 宋晓健,喻洁,张俊芳,等. 面向能源互联网的电力-通信联合 仿真平台设计[J]. 电力工程技术,2017,36(3):44-49.
   SONG X J, YU J, ZHANG J F, et al. Design of power communication simulation platform for energy Internet [J]. Electric Power Engineering Technology,2017,36(3):44-49.(In Chinese)
- [5] 杨蓉,曹旺斌,尹成群.基于自适应遗传算法的PLC信道动态 子载波分配[J].电力系统保护与控制,2019,47(12): 111-116.
   YANG R,CAO W B,YIN C Q. Dynamic subcarrier allocation of

PLC channel based on adaptive genetic algorithm[J]. Power System Protection and Control, 2019, 47(12):111-116. (In Chinese)

- [6] DUBEY A, MALLIK R K, SCHOBER R. Performance analysis of a multi-hop power line communication system over log-normal fading in presence of impulsive noise[J]. IET Communications, 2015,9(1):1-9.
- [7] 史燕平,王丽娇,李秀彩,等. 电力线和无线双媒质通信系统的 自适应中继协议[J]. 电力自动化设备,2021,41(6):171-179.
  SHI Y P, WANG L J, LI X C, *et al.* Adaptive relay protocol for power line-wireless hybrid media communication system [J].
  Electric Power Automation Equipment, 2021, 41(6):171-179. (In Chinese)
- [8] JANI M, GARG P, GUPTA A. Performance analysis of a mixed cooperative PLC - VLC system for indoor communication systems [J]. IEEE Systems Journal, 2020, 14(1):469-476.
- [9] KHALIGHI M A, UYSAL M. Survey on free space optical communication: a communication theory perspective [J]. IEEE Communications Surveys & Tutorials, 2014, 16(4):2231–2258.
- [10] SIDDHARTH M, SHAH S, VISHWAKARMA N, et al. Performance analysis of adaptive combining based hybrid FSO/RF terrestrial communication [J]. IET Communications, 2020, 14 (22) : 4057–4068.
- [11] AL-ERYANI Y F, SALHAB A M, ZUMMO S A, et al. Two-way multiuser mixed RF/FSO relaying: performance analysis and power allocation [J]. Journal of Optical Communications and Networking, 2018, 10(4): 396-408.
- [12] ANEES S, BHATNAGAR M R. Performance of an amplify-andforward dual-hop asymmetric RF - FSO communication system
   [J]. Journal of Optical Communications and Networking, 2015, 7 (2):124-135.
- [13] ZEDINI E, SOURY H, ALOUINI M S. On the performance analysis of dual-hop mixed FSO/RF systems [J]. IEEE Transactions on Wireless Communications, 2016, 15(5):3679–3689.
- [14] JANI M, GARG P, GUPTA A. Performance analysis of a mixed cooperative PLC - VLC system for indoor communication systems
   [J]. IEEE Systems Journal, 2020, 14(1):469-476.
- [15] GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products[M]. 6th ed. New York: Academic Press, 2000.
- [16] CHEN J C, YANG L, WANG W J, et al. A novel energy harvesting scheme for mixed FSO-RF relaying systems [J]. IEEE Transactions on Vehicular Technology, 2019, 68(8):8259–8263.
- [17] The Wolfram functions site, Available: http://functions.wolfram. com.