文章编号:1674-2974(2022)10-0001-07

DOI:10.16339/j.cnki.hdxbzkb.2022296

可重构智能表面辅助的混合 RF-FSO 传输系统性能分析

杨亮^{1†},袁勇杰¹,陈生海¹,马荣昌² (1. 湖南大学信息科学与工程学院,湖南长沙 410082; 2. 湖南金龙智造科技股份有限公司,湖南长沙 410131)

摘要:自由空间光(FSO)通信具有高速率、低成本和强抗干扰能力,但是大气湍流引起的衰落会造成FSO通信系统的性能恶化.传统的解决方案是使用RF链路作为并行的通信链路来提升系统性能.可重构智能表面(RIS)具有低损耗、部署简易且无须复杂的编码和解码等优点,能够进一步提高RF链路的接收信噪比.本文提出一种RIS辅助的混合RF-FSO传输系统,以此来改善通信服务质量.基于此混合模型,导出系统中断概率、平均误码率和信道容量的表达式,同时给出蒙特卡罗仿真来验证分析结果的准确性.结果表明所提出系统的性能相比于传统的混合RF-FSO系统有显著的提升.

关键词:自由空间光通信;可重构智能表面;混合系统;性能分析 中图分类号:TN92 文献标志码:A

Performance Analysis of RIS-assisted Hybrid RF-FSO Transmission Systems

YANG Liang^{1†}, YUAN Yongjie¹, CHEN Shenghai¹, MA Rongchang²

(1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;2. Hunan Castking Intelligent Manufacturing Technology Co., Ltd., Changsha 410131, China)

Abstract: Free Space Optical (FSO) communications offer high speed, low cost, and strong anti-interference ability. However, the atmospheric turbulence-induced fading causes deterioration in the performance of FSO communication systems. The conventional solution is to use Radio Frequency (RF) links as parallel communication links to improve the system's performance. On the other hand, Reconfigurable Intelligent Surfaces (RIS) can be employed to further improve the received signal-to-noise ratio of the RF link due to its advantages of low loss, easy deployment, and no need for complex coding and decoding. In this paper, a RIS-assisted hybrid RF-FSO transmission system is proposed to improve the communication quality of service. Based on this hybrid model, the exact expressions for the outage probability, average Bit Error Ratio (BER), and channel capacity are derived, and Monte Carlo simulations are presented to verify the accuracy of the analytical results. The results show that the performance of the proposed

^{*} 收稿日期:2021-08-14

基金项目:国家自然科学基金资助项目(91838302), National Natural Science Foundation of China(91838302);湖南省重点研发计划项目 (2022GK2051), The Key R&D Projects of Hunan Province(2022GK2051);湖南省高新技术产业科技创新引领计划项目(2022GK4004), The High-tech Industry Science and Technology Innovation Leading Project Program of Hunan Province(2022GK4004) 作者简介:杨亮(1977—), 男,湖南邵阳人,湖南大学教授,博士生导师

[†]通信联系人,E-mail: liangy@hnu.edu.cn

system is significantly improved compared with the conventional hybrid RF-FSO system.

Key words: free-space optical communication; reconfigurable intelligent surface; hybrid system; performance analysis

最近,可重构智能表面(Reconfigurable Intelligent Surface, RIS)因能有效控制反射信号的相位、频 率、幅度甚至极化方式来构造一个实时可重构的传 播环境而得到广泛关注^[1]. RIS由许多低成本的人造 元器件构成,具有低损耗、易布置、对电磁波电磁参 数灵活调控、频谱效率高等优点,具有很多应用场 景,如D2D网络、智慧电子医疗、物联网等.近两年, 关于 RIS技术,已有一些研究成果存在.文献[2]提 出了一种精确的表达式来表征 RIS 辅助无线通信系 统级联信道统计分布,对 RIS 的性能分析有一定的 参考价值.文献[3]在物理上实现了利用 RIS 改变信 号相位信息,可以低延时传输高清视频流信号.

近年来,FSO作为一种安全和高带宽的通信技 术受到了通信行业研究人员的广泛关注^[4-5].FSO通 信技术具有非授权频谱、安装便捷、功耗低以及与射 频通信的兼容性好等优点,在无线通信领域有很广 泛的应用.由于大气湍流效应以及恶劣天气(如雾 霾、暴雪等)的存在,FSO链路的可靠性受到很大影 响.因此,提出了多种大气湍流抑制技术,譬如自适 应光学、中继技术、空间分集技术、RF-FSO 混合系统 等.特别的,FSO链路不受雨天影响,但会由于雾和 闪光而导致光信号严重衰减,而RF链路在雨中衰减 严重,却能轻易地穿过雾霾,所以RF链路和FSO链 路所构成的混合方案很好地利用各自优势来对抗天 气不利因素.近来,关于混合的RF-FSO系统研究成 果颇多. 文献[6]提出了一个基于开关选择的 RF-FSO混合系统,考虑一个单门限值和双门限值下的 FSO链路操作,并给出混合系统与单一系统的性能 比较.文献[7]提出了一个基于自适应合并的RF-FSO混合传输系统,并给出了此混合系统与单FSO 系统和单RF系统的性能比较.目前,已有商用的 RF-FSO混合系统存在,如文献[8]将射频链路用作 备用信道来实现混合 RF-FSO 系统,在两个信道上 发送相同的数据,并在链路可靠性更高的接收端进 行信号检测.复旦大学设计了一个双RF和双FSO混 合系统,并首次实现了800m距离内的1.196 Tb/s 无 线精准传输[9].

综上所述,目前关于RF与FSO并行混合系统的 可实现性及性能分析已有很多研究成果.然而,RIS 辅助的RF与FSO并行混合系统的性能分析还鲜有 文献提及,这也是本文最主要的创新点.

本文主要内容如下:

1)基于开关选择的混合系统架构,建立了一个 新型的FSO链路和RIS辅助通信链路并行的信号传 输系统.

2)导出系统中断概率、平均误码率、信道容量表 达式,并经过仿真验证分析结果准确性,且与传统的 RF-FSO混合系统进行比较.仿真结果表明经过RIS 辅助后性能具有很大程度的提升.

1 系统与信道模型

考虑一个混合的数据传输系统,如图1所示.在 该系统中,FSO链路与RIS辅助的通信链路是并行工 作的.数据输入端S包含一个FSO发射机和RF发射 机,数据接收端D同样有两个接收机,一个用来接收 光信号,一个用来接收射频信号.由于光通信的种种 优点,假设FSO链路为通信的主链路.主链路的信道 状态信息(Channel State Information,CSI)通过一条反 馈路径从D传回S.此反馈信息作为开关进行选择, 如果FSO链路由于大气传播条件恶劣等原因中断, 数据输入端就会选择RIS链路来进行数据传输.

1.1 FSO主链路信道模型

在主链路中,RF交流电信号R(t)首先基于子载 波调制方式经二进制相移键控方案转化为光信号. 为了保证发射的光信号在FSO链路中不失真,需要 在信源的调制模块中将直流偏置 $B_{\rm D}$ 与R(t)进行叠 加,从而保证调制信号的非负性.所以传输的光信号 可以表示 $M(t) = \sqrt{P_{\rm sl}} [sR(t) + B_{\rm D}]$,其中 $P_{\rm sl}$ 代表光 发射机的发射功率,s代表电光转换系数^[10].因此D 处的光探测器(photo-detector, P-D)接收到的光信 号为

$$y_{1} = h_{1}R_{\theta}AM(t) + n_{1}(t) = h_{1}R_{\theta}A\sqrt{P_{s1}} sR(t) + h_{1}R_{\theta}A\sqrt{P_{s1}} B_{D} + n_{1}(t)$$
(1)

式中:R₄是P-D的响应度^[11],A表示P-D的物理区域 大小, $n_1(t)$ 是均值为0、方差为 N_1 的加性高斯白噪 声.另外,为了克服周围的光照导致的强直流干扰, 发射机和接收机之间放置仰角 θ 须小于30°.同样,由 于环境中光信号频率与源信号频率不同,可以在P-D前沿安装一个原子共振滤光片,将与源信号偏振 方向或频率不同的环境光过滤掉,同时直流分量引 起的宽带噪声也被抑制滤除.在式(1)中,h,是FSO 链路的信道衰落增益,可以表示为 $h_1 = h_1 h_2 h_3$,式 中:h1为路径损失,h。为大气湍流引起的衰落满足伽 马-伽马分布 $h_p = A_0 \exp\left(\frac{-2r^2}{w^2}\right)$ 是由于物理机械未 对准所引起的指向误差^[12],式中r是接收机处的半径 偏移, $w_e = \frac{\sqrt{\pi} \operatorname{erf}(v) w_b^2}{2v e^{-v^2}}$ 是等效光束半径, $A_0 =$ $\operatorname{erf}^{2}(v), \operatorname{erf}(\cdot)$ 是错误函数, $v = \sqrt{\frac{\pi}{2}} \frac{R_{a}}{w_{a}}, R_{a}$ 是接收机 孔径的半径,w_b是传输距离L处的光束半径.FSO链 路信号处理流程图如图2所示.

经过滤光片和光电探测器处理后,D接收到的 电信号为:

$$y_1 = \eta h_1 R_\theta A \sqrt{P_{s1}} \, \mathfrak{s} R(t) + n_2(t) \tag{2}$$

式中: η 是光电转换系数^[13], $n_2(t)$ 是均值为0、方差为 N_2 的加性高斯白噪声.因此,FSO主链路的信噪比为:

$$\gamma_{1} = \frac{\eta^{2} h_{L}^{2} h_{a}^{2} h_{p}^{2} R_{\theta}^{2} A^{2} P_{s1} s^{2}}{N_{2}} = \bar{\gamma}_{1} h_{a}^{2} h_{p}^{2}$$
(3)

式中: $\bar{\gamma}_1 = \frac{\eta^2 h_L^2 R_{\theta}^2 A^2 P_{s1} s^2}{N_2}$ 为平均信噪比.根据文献 [14], γ_1 的概率密度函数为:

$$f_{\gamma_{1}}(x) = \frac{\xi^{2}}{2x\Gamma(a)\Gamma(b)} G_{1,3}^{3,0} \left(ab \sqrt{\frac{x}{\bar{\gamma}_{1}}} \Big|_{\xi^{2},a,b}^{\xi^{2}+1} \right)$$
(4)

另外,γ,的累积分布函数为:

$$F_{\gamma_1}(x) = \frac{\xi^2}{\Gamma(a)\Gamma(b)} G_{2,4}^{3,1} \left(\frac{ab}{A_0} \sqrt{\frac{x}{\bar{\gamma}_1}} \right)_{\xi^2,a,b,0}^{1,\xi^2+1}$$
(5)

式中: $\xi = \frac{w_e}{2\sigma_s}$ 表示光电转化中等价的光束宽度与抖动标准差的比值; $\Gamma(\cdot)$ 是伽马函数; $G_{\perp}(\cdot)$ 是 Meijer-G函数^[15].由文献[13],可知

$$a = \left[\exp\left(\frac{0.49\sigma_{\rm R}^2}{(1+0.18\kappa^2+0.56\sigma_{\rm R}^{\frac{12}{5}})^{\frac{7}{6}}}\right) - 1 \right]$$

为大尺度湍流参数,

$$b = \left[\exp\left(\frac{0.51\sigma_{\rm R}^2 \left(1 + 0.69\sigma_{\rm R}^{\frac{12}{5}}\right)^{-\frac{5}{6}}}{\left(1 + 0.9\kappa^2 + 0.62\kappa^2\sigma_{\rm R}^{\frac{12}{5}}\right)^{\frac{5}{6}}} \right) - 1 \right]$$

为小尺度湍流参数.

式中: $\kappa^2 = \frac{k_n D_a^2}{4L}, \sigma_R^2 = 0.5 C_n^2 k_n^{\frac{7}{6}} L^{\frac{11}{6}}$ 为对数光强起伏方 差, $k_n = \frac{2\pi}{\lambda_w}$ 代表光波的数量, λ_w 是波长, D_a 是接收机 孔径的直径, C_n^2 是大气折射率结构常数.

1.2 RIS辅助通信链路信道模型

在辅助链路中,输入信号由S发送到RIS上,然 后RIS被动地将信号经过反射后发送到D.RIS辅助 通信链路信号处理流程图如图3所示.所以D处接收 到的信号为

$$y_2 = \left[\Delta \sum_{i=1}^{N} h_i \mathrm{e}^{\mathrm{j}\phi_i} g_i\right] R(t) + n_3(t) \tag{6}$$

式中:*N*是RIS上智能反射单元的个数, Δ 是RIS上反 射单元的利用系数, ϕ_i 是RIS第*i*个反射单元产生的 可调相位(*i*=1,2,…, *N*)^[16], $n_3(t)$ 是均值为0、方差为

 N_3 的加性高斯白噪声.假设 RF 信道衰落服从瑞利分 布,故 $h_i = d_{sR}^{\frac{\chi}{2}} \alpha_i e^{-j\theta_i}, g_i = d_{RD}^{\frac{\chi}{2}} \beta_i e^{-je_i}, d_{sR} 和 d_{RD}$ 分别是S 到 RIS 和 RIS 到 D 的距离, $\alpha_i 和 \beta_i$ 是衰落信道的振幅, $\theta_i \pi \varepsilon_i$ 是信道的相位, χ 代表路径损耗指数.因此,RIS辅助通信链路的信噪比为:

$$\gamma_2 = \frac{\left|\Delta \sum_{i=1}^{N} \alpha_i \beta_i e^{j(\phi_i - \theta_i - s_i)}\right|^2 P_{s_2}}{N_3 d_{\text{SR}}^{\chi} d_{\text{RD}}^{\chi}}$$
(7)

式中: P_{s2} 是RF发射机的发射功率,假设RIS完全获 得衰落信道的相位信息,当调整相位满足 $\phi_i = \theta_i + \varepsilon_i$ 时^[16],接收信噪比达到最大值,并且我们近似假设 RIS上反射单元利用系数 $\Delta = 1$.所以RF链路最终接 收信噪比为:

$$\gamma_{2} = \frac{\left|\sum_{i=1}^{N} \alpha_{i} \beta_{i}\right|^{2} P_{s2}}{N_{3} d_{\text{SR}}^{\chi} d_{\text{RD}}^{\chi}} = \left|\sum_{i=1}^{N} \alpha_{i} \beta_{i}\right|^{2} \bar{\gamma}_{2}$$
(8)

式中: $\bar{\gamma}_2 = \frac{P_{s2}}{N_3 d_{sR}^{\chi} d_{RD}^{\chi}}$ 代表平均信噪比,根据文献[2],

 γ_2 的概率密度函数为:

$$f_{\gamma_2}(x) = \frac{2\Lambda^{k_w + m_w} x^{\left(\frac{k_w + m_w}{2} - 1\right)}}{\Gamma(k_w) \Gamma(m_w)} \mathbf{K}_{k_w - m_w} \left(2\Lambda \sqrt{x}\right)$$
(9)

式中:K₀(·)是0阶修正贝塞尔函数, $\Lambda = \sqrt{\frac{k_{w}m_{w}}{\Omega_{w}\bar{\gamma}_{2}}}, k_{w} =$

$$\frac{-u + \sqrt{s^{2} - 4ut}}{2u} \pi m_{w} = \frac{-u - \sqrt{s^{2} - 4ut}}{2u} \& \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}$$
$$\Omega_{w} = \mu_{\gamma_{2}}(2) \& \gamma_{2} \text{ in Proposition } \mathbb{R} \mathbb{R}$$
$$t = 2\mu_{\gamma_{2}}(2)^{2}\mu_{\gamma_{2}}(4)$$

$$u = \mu_{\gamma_2}(6)\mu_{\gamma_2}(2) + \mu_{\gamma_2}(2)^2\mu_{\gamma_2}(4) - 2\mu_{\gamma_2}(4)^2$$

$$s = \mu_{\gamma_2}(6)\mu_{\gamma_2}(2) - 4\mu_{\gamma_2}(4)^2 + 3\mu_{\gamma_2}(2)^2\mu_{\gamma_2}(4)$$

$$\mu_{\gamma_2}(n) = \sum_{j_1=0}^n \sum_{j_2=0}^{j_1} \cdots \sum_{j_{L-1}=0}^{j_{L-2}} \binom{n}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{L-2}}{j_{L-1}} \times$$

$$\mu_{R_1}(n-j_1)\mu_{R_2}(j_1-j_2) \cdots \mu_{R_L}(j_L-1)$$

式中:
$$\mu_{R_i}(n) = \Gamma \left(1 + \frac{n}{2}\right)^2 \mathcal{B} R_i$$
的第 n 个分量.
 γ_2 的累积分布函数为:
 $F_{\gamma_2}(x) = \frac{1}{\Gamma(k_w)\Gamma(m_w)} G_{1,3}^{2,1} \left(\Lambda^2 x \Big|_{k_w,m_w,0}^1\right)$ (10)

2 系统性能分析

2.1 中断概率

在该系统中,如果FSO信道的瞬时信噪比大于 门限值γ^{FSO},系统开关将选择FSO链路,如果FSO链 路的瞬时信噪比低于门限值,那么系统就会选择RIS 链路;如果RIS链路的瞬时信噪比大于门限值γ^{RIS}, 那么通过RIS链路来传输数据.如果两条链路均小 于各自的门限值,那么系统将发生中断.基于以上定 义,系统的中断概率为:

 $P_{out} = P_{out}^{FSO} \times P_{out}^{RIS} = F_{\gamma_1}(\gamma_{th}^{FSO}) \times F_{\gamma_2}(\gamma_{th}^{RIS})$ (11) 式中: $P_{out}^{FSO} 和 P_{out}^{RIS} 分别为两独立链路各自的中断概$ 率.将式(5)和式(10)代入式(11)可得系统中断概率为

$$P_{\text{out}} = \frac{\xi^{2}}{\Gamma(a)\Gamma(b)\Gamma(k_{w})\Gamma(m_{w})} G_{2,4}^{3,1} \left(\frac{ab}{A_{0}} \sqrt{\frac{\gamma_{\text{th}}^{\text{FSO}}}{\bar{\gamma}_{1}}}\right)_{\xi^{2},a,b,0} \times G_{1,3}^{2,1} \left(\Lambda \gamma_{\text{th}}^{\text{RIS}}\right)_{k_{w},m_{w},0}^{1}$$
(12)

2.2 平均误码率

误码率也是无线通信系统常用性能指标.对于 不同的二进制调制方式,通用的误码率表达式为^[17]

$$P_{\rm BER} = \frac{q^p}{2\Gamma(p)} \int_0^\infty \exp(-qx) x^{p-1} F_{\gamma}(x) dx \qquad (13)$$

式中: $F_{\gamma}(x)$ 是CDF,参数p和q的不同取值代表不同 调制方式,例如p = 1和q = 1代表差分相移键控 (Differential Phase Shift Keying, DPSK).

为了计算系统的平均误码率,本文假设使用二进制 DPSK 进行调制并通过 FSO 链路或者 RIS 链路进行信号传输.根据文献[6],混合系统平均误码率表示为:

$$\overline{P_{\rm BER}} = \frac{(1 - P_{\rm out}^{\rm FS0})P_{\rm BER}^{\rm FS0} + P_{\rm out}^{\rm FS0}(1 - P_{\rm out}^{\rm RIS})P_{\rm BER}^{\rm RIS}}{1 - P_{\rm out}} \quad (14)$$

式中: $P_{\text{BER}}^{\text{ISO}} 和 P_{\text{BER}}^{\text{RIS}} 分别是 FSO 链路和 RIS 链路的误码率.$

2.2.1 FSO链路误码率

将式(5)代入式(13)可计算得到FSO链路的误 码率为^[14]:

2.2.2 RIS链路误码率

将式(10)代入式(13)可计算得到RIS链路的误 码率为^[2]

$$P_{\rm BER}^{\rm RIS} = \frac{1}{2\Gamma(k_{\rm w})\Gamma(m_{\rm w})} G_{2,3}^{2,2} \Big(\Lambda\Big|_{k_{\rm w},m_{\rm w},0}^{0,1}\Big)$$
(16)

将式(5)、(10)、(12)以及式(14)~(16)结合起 来,可以得出此系统平均误码率的计算结果.

2.3 信道容量

信道容量也是通信系统性能考量的重要指标, 根据文献[18],可以通过CDF计算容量,即

$$C = \frac{B}{\ln(2)} \int_0^\infty (1+x)^{-1} \left[1 - F_\gamma(x)\right] dx \tag{17}$$

同理,也可以采用常用的容量计算方法[19],即

$$C = B \int_{0}^{x} \log_{2}(1+x) f_{\gamma}(x) dx$$
 (18)

式中:B是信道带宽.

对于此混合系统,由文献[6],其信道容量为

 $C_{s} = (1 - P_{out}^{FSO})C_{FSO} + P_{out}^{FSO}(1 - P_{out}^{RIS})C_{RIS}$ (19) 式中: C_{FSO} 和 C_{RIS} 分别是两条链路的信道容量. 2.3.1 FSO链路信道容量

将式(4)代入式(18)中,同时将 log₂(1 + x)用 Meijer-G函数表示为

$$\log_2(1+x) = \frac{\ln(1+x)}{\ln(2)} = \frac{1}{\ln(2)} G_{2,2}^{1,2} \left(x \Big|_{1,0}^{1,1} \right)$$
(20)

此时计算 FSO 链路容量转化为两个 G 函数相乘的积分,利用文献[15, Eq.(07.34.21.0013.01)],可以得到

$$C_{\rm FSO} = \frac{B_{\rm FSO}\xi^2 2^{a+b-3}}{\ln(2)\Gamma(a)\Gamma(b)\pi} \times G_{4,8}^{8,1} \left(\frac{a^2b^2}{16\bar{\gamma}_1 A_0^2} \Big|_{\frac{\xi^2}{2}, \frac{\xi^2+1}{2}, \frac{a}{2}, \frac{a+1}{2}, \frac{b}{2}, \frac{b+1}{2}, 0, 0} \right)$$
(21)

式中: B_{FSO} 是FSO链路的信道带宽.

2.3.2 RIS链路信道容量

将式(10)代入式(17)中,计算可得 RIS 链路容 量为^[2]

$$C_{\rm RIS} = \frac{B_{\rm RIS}}{\ln(2)\Gamma(k_{\rm w})\Gamma(m_{\rm w})} G_{2,4}^{4,1} \Big(\Lambda\Big|_{0,0,k_{\rm w},m_{\rm w}}^{0,1}\Big)$$
(22)

式中:*B*_{RIS}是 RIS 辅助链路的信道带宽.将式(5)、(10)、(19)、(21)及式(22)结合起来可以得出此系统 信道容量计算结果.

3 仿真分析

为了验证计算的准确性以及观察具体的系统性能,采用蒙特卡罗(Monte Carlo)仿真方法,对 RIS 辅助的混合系统与传统的 RF-FSO 混合系统进行比较,不失一般性,假设 $\bar{\gamma} = \bar{\gamma}_1 = \bar{\gamma}_2$ 为平均信噪比.另外,根据文献[20],FSO 门限值设定太大会导致链路切换不及时,性能变差,所以设定 $\gamma_{\pm}^{FSO} = \gamma_{\pm}^{RIS} = 3$ dB.同时,类比文献[12]和文献[13],根据不同湍流条件给出参数a和b的数值,见表1.

表1 FSO链路参数设定表 Tab.1 FSO link parameters setting table

湍流 强度	a	b	$R_{\rm a}$	$w_{\rm b}$	$\sigma_{ m s}$	$h_{\rm L}$	ξ
弱湍流	5.01	3.34					
中湍流	4.40	2.56	3.1 cm	4.5 m	0.3	1	9.3
强湍流	4.34	1.31					

图4给出了本文所提出系统与传统的混合系统 在不同平均信噪比下的中断概率比较.可以看出,相 比于传统的混合系统,由于使用性能更为良好的 RIS 链路作为备份链路,本文提出的系统有更好的传输 性能.同时,反射单元数目 N 越大,接收端的瞬时信 噪比越大,从而得到更低的中断概率.由于仿真次数 只取了10⁵次,仿真结果只能显示到10⁻⁵,所以在高信 噪比时,会出现分析值存在而模拟数据缺失的情况.

图4 本文系统与传统 RF-FSO 混合系统中断概率对比图 Fig.4 Comparison diagram of the outage probability between this system and the traditional RF-FSO hybrid system

特别的,取 $\bar{\gamma}$ = 10 dB时,传统的混合系统中断概率 为0.1469,而RIS辅助的混合系统在N=5时中断概 率为1.385×10⁻⁴,系统性能提升约1060倍.当N=10 时,系统中断概率基本为0.同时,可以观察到,大气 湍流程度对传统系统影响较大,而对本文提出的系 统,尤其是N取值越大,大气湍流导致的性能差别越 来越小.

图5给出了混合系统在不同的大气湍流条件下 平均误码率随平均信噪比的变化情况.可以看出,低 信噪比情况下,FSO链路发生中断,此时系统选择 RIS辅助链路,误码率显著降低.但随着平均信噪比 增大,FSO链路瞬时信噪比大于门限值,此时系统重 新选择FSO链路进行通信.但是由于无线系统的不 确定性,会出现提前判断FSO链路已达到门限值的 情况而切换至FSO链路,此时FSO未达到工作状态, 所以出现拐点,误码率出现短暂上升.随着平均信噪 比继续增大,FSO链路进入稳定的工作状态,所以平 均误码率持续降低.

Fig.5 Variation diagram of the system average bit error rate under different atmospheric turbulence parameters

图 6 给出了混合系统的信道容量与平均信噪比 的关系.设定 $B_{FSO} = 1$ GHz 和 $B_{RIS} = 200$ MHz.可以看 出,在 $\bar{\gamma} < 0$ dB时,传统的 RF-FSO 混合系统信道容 量几乎为 0.特别的,取 $\bar{\gamma} = 5$ dB时,传统的 RF-FSO 混合系统信道容量为 0.2 901 Gbits/s,N = 5 的 RIS 辅 助混合系统信道容量为 1.079 Gbits/s,而N = 10 的信 道容量为 1.419 Gbits/s,性能分别提升约 2.7 倍以及 3.9倍.随着信噪比继续增大,此时两种混合系统均选择FSO链路进行通信,于是在三种湍流程度下信 道容量基本重合.

图 6 本文系统与传统 RF-FSO 混合系统信道容量对比图 Fig.6 Comparison diagram of the channel capacity between this system and the traditional RF-FSO hybrid system

4 结 论

本文针对极端天气情况下FSO通信易出现中断的情形,提出了一种可重构智能表面辅助的混合 RF-FSO通信系统,通过计算以及仿真验证了系统的可行性,分析了智能反射表面单元个数和大气湍流强度对系统性能的影响.结果显示,经过 RIS 辅助后,相比于传统的 RF-FSO 混合系统,本文所提系统可以有效削弱大气湍流影响,同时中断概率降低为千分之一左右,低信噪比下信道容量提升2倍以上, 且反射单元个数N越大,系统性能越好.

参考文献

- WU Q Q, ZHANG R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network [J].
 IEEE Communications Magazine, 2020, 58(1):106–112.
- [2] YANG L, MENG F X, WU Q Q, et al. Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1985-1989.
- [3] TANG W K, LI X, DAI J Y, *et al.* Wireless communications with programmable meta surface: transceiver design and experimental results[J]. China Communications, 2019, 16(5):46–61.

- [4] KHALIGHI M A, UYSAL M. Survey on free space optical communication; a communication theory perspective [J]. IEEE Communications Surveys & Tutorials, 2014, 16(4):2231-2258.
- [5] AL-GAILANI S A, MOHD SALLEH M F, SALEM A A, et al. A survey of free space optics (FSO) communication systems, links, and networks[J]. IEEE Access, 9:7353-7373.
- [6] USMAN M, YANG H C, ALOUINI M S. Practical switchingbased hybrid FSO/RF transmission and its performance analysis [J]. IEEE Photonics Journal, 2014,6(5):1-13.
- [7] RAKIA T, YANG H C, ALOUINI M S, et al. Outage analysis of practical FSO/RF hybrid system with adaptive combining [J].
 IEEE Communications Letters, 2015, 19(8):1366-1369.
- [8] BLOOM S, HARTLEY S. The last-mile solution: hybrid FSO radio[R]. Boston: White paper, AirFiber Inc. no. 802-0008-000, 2002:1-20.
- [9] WANG K H, YU J J, WEI Y R, et al. Delivery of 1.196–Tb/s signal over 800 m based on RF/FSO convergence [C]//45th European Conference on Optical Communication (ECOC 2019). Dublin, Ireland: Institution of Engineering and Technology, 2019:1–4.
- LEE E, PARK J, HAN D, et al. Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links[J].
 IEEE Photonics Technology Letters, 2011, 23(21):1642-1644.
- [11] NISTAZAKIS H E, KARAGIANNI E A, TSIGOPOULOS A D, et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels [J]. Journal of Lightwave Technology, 2009, 27(8):974–979.
- [12] FARID A A, HRANILOVIC S. Outage capacity optimization for free-space optical links with pointing errors[J]. Journal of Lightwave Technology, 2007, 25(7):1702-1710.

- [13] 邵军虎,刘晓楠,孙莹. 外差检测下FSO/RF混合系统中断概率 研究[J]. 电子测量与仪器学报,2019,33(9):137-143.
 SHAO J H,LIU X N,SUN Y. Study on outage probability of FSO/ RF hybrid system under heterodyne detection[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(9):137-143. (In Chinese)
- [14] YANG L, GUO W, ANSARI I S. Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface [J]. IEEE Communications Letters, 2020, 24(7):1558–1562.
- [15] WOLFRAM RESEARCH. Meijer G-function [OL]. https://functions. wolfram.com/07.34.21.0013.01. 2001-10-29/2021-08-10.
- [16] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces [J]. IEEE Access, 7:116753–116773.
- [17] ANSARI I S, AL-AHMADI S, YILMAZ F, et al. A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels[J]. IEEE Transactions on Communications, 2011, 59(10):2654-2658.
- [18] VELLAKUDIYAN J, ANSARI I S, PALLIYEMBIL V, et al. Channel capacity analysis of a mixed dual-hop radio-frequencyfree space optical transmission system with Múlaga distribution [J]. IET Communications, 2016, 10(16):2119-2124.
- [19] GOLDSMITH A J, VARAIYA P P. Capacity of fading channels with channel side information [J]. IEEE Transactions on Information Theory, 1997, 43(6):1986-1992.
- [20] BAI Z Q, JIA J L, WANG C X, et al. Performance analysis of SNRbased incremental hybrid decode-amplify-forward cooperative relaying protocol[J]. IEEE Transactions on Communications, 2015, 63(6):2094–2106.