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High—precision Pipelined—successive Approximation Register Hybrid

Analog—to—digital Converter Design
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(1. School of Microelectronics , Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology , Tianjin University , Tianjin 300072, China)

Abstract: To meet the requirements of the readout circuit of the photodiode array in the digital X-ray system
for an analog—to—digital converter (ADC) with superior average performance, a high—precision pipelined—
successive approximation register analog—to—digital converter is designed. It features a gain—enhanced amplifier
structure with a pre—amplification stage to realize the high efficiency amplifier. The use of the least significant
bit (LSB) averaging noise—resistant method simplifies the structure of the second—stage comparator, effectively
reducing overall system power consumption. The self-adjusted comparator clock is also realized using a feedback
loop based on a delay—locked loop (DLL) , enhancing asynchronous timing robustness. The ADC circuit design,
layout, and post—simulation verification were completed using the 0.18 pm EPI BCD process. Under 5.0 V supply
voltage and 5 MS/s sampling rate conditions, the ADC achieves an ENOB of 15.61 bits, an SNDR of 95.73 dB, and
an SFDR of 110.72 dB.
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Fig.1 Overall architecture of Pipelined SAR ADC
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Fig.2 Capacitor array structure
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Fig.3 DAC output based on V., switching scheme
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Fig.4 Flowchart of the foreground calibration algorithm

A EAR S AL By B, AR AL B AR AR I
Vi L 1) b A3 R s 42 IR L B 45 R U
AT AL L R B R B DR 22 Ak MR AR S 8
HLAAT A -

Vior s + Vos) X (2C, + AC,)

p=Vew —
0= (7)
Viorn) % (2C, + ACy)

Oy = (VCM -

A Vo MR IR ZE ARG B A ST A, 5 fe e o7 B
PR .



144 U PN S S =g 2025 4F

C, + AC, = M=1

AVigp = 2C, + AC, (VREFN = Vi + Vos) (8) 100 - | ;fig f:f%zg

AP T Vo P Vi L PP B AT Da

Ve V22 A T 24 , S B FRER T 1 7 e £ B e

A 0] ot A5 57 Fi, 7 2 T A Ak, ) F 98 25 2k 3 25 -l SR
RO . IAER 30125 0 Hs AR AR VOB L 75 3 S B s . -~
FEB AL T ! . ~
13 LSB AT % e

Ll 45 7 e 7 2 PR AR SAR ADC 552 30 e kG 5 114 1
BN R AL G REAR L AR W 75 1 T i DU FE R . LSB
XTI T R R SR IS e At B B 1) LA A R
FE I SR 22 UK A A R 1 T s Ak e s s i
e LA AT B 480 o B g M 7 A (L, DGR B AE AR IE
ADC RS BE B 250 T 42 v b AS i e 7 25 PR L AT Ak e 3%
RS F E

LSB - Y40 e 7 7 A RO Qi8] 5 7R LSB P
PO I vk E — 2 (R MR S B AR, 6T
1 B LA AR I | LSB 1) L B A i o & SRR R Al iR
() 5 XTI LA 4 4 75, LSB 1Y) LA 54 1 45
HBJE A B X AR BL T LSB S X4 sy A
TCHK .

ADCEHS L ADCH HIB B LSBIg: /5 P 1) B
BE | 8 4 2 174 5 14 1 1/4 1 1/4
Lhicassifl o 1 1 1 0 1 0
T
|
| {
| — __g —_
S |
DACHH; | =
e T e e e
|
o
|
RS | O 4 2 12

H5 LSB-F3H4uwkE 7 kAR

Fig.5 Effectiveness of LSB averaging noise—resistant method
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Fig.6 Effectiveness of LSB averaging noise—resistance method

under various comparator noise levels
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Fig.7 The SNR of the ADC with different LSB averaging counts

at 0.3LSB comparator noise level
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Fig.9 Clock distribution for Pipelined SAR ADC
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Fig.11 Residue amplifier PVT simulation results
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Fig.12 First—stage comparator structure
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%1 Pipelined SAR ADCEHE M T ERFE
Tab.1 Process corner simulation of dynamic performance
for Pipelined SAR ADC

2 Pipelined SARADCHEEZHS5RETUHE
Tab.2 Simulation of voltage fluctuation and temperature
variation for Pipelined SAR ADC

T2 SFDR/dB SNDR/dB THD/dB ENOB/bit
FF 106.64 93.74 -106.55 15.28
TT 110.72 95.73 -109.43 15.61
SS 114.17 96.64 -113.73 15.76

F3A[H, 522 SCHRA B, AR SCIE T Y Pipelined
SAR ADC 7£ ENOB.SNDR . SFDR 45 & iIF ADC X Ji&F
M B A4 A b8 il RIS AR G TR ADC
[ FoMs 48 A5 A 171.8 dB. 5 I fi ik, 7 SCffi FH i)

R FRBER ) )
5 SFDR/dB  SNDR/dB THD/dB ENOB/bit
JE/V FEIC
45 -40 111.40 95.25 -109.72 15.56
45 85 110.98 95.96 -110.72 15.68
5.0 25 110.72 95.73 -109.43 15.61
5.5 -40 106.89 95.05 -106.033 15.52
5.5 85 108.38 95.67 -107.62 15.63

A R D FE R T HR R 4 S ADC RS B, DT 42
ADC it i RV A SCU A B DR RS B2 48 b 125

LSB V3440 Me 75 7 vk A S B 1 = RS I REfE. A PERE
%3 Pipelined SAR ADC P8¢ B 45 K Xf Lk
Tab.3 Summary and comparison of Pipelined SAR ADC performance

Sk T4mm  fEHEHEE/NV  SHER/Mbit ENOB/Mbit  SREEFR/(MS+s™') SNDR/AB SFDR/AB POWER/mW  FoMs/dB
k[ 13] 28 1.05 14 10.82 60 66.9 91 4.26 165.4
SCHik[14] 180 1.8 12 10.76 50 66.53 78.95 5.5 163.1
k[ 15] 350 3.3 15 12.81 0.001 78.86 91.66 0.0067 157.6
Wikl 16] 130 12 12 10.80 10 66.6 87.8 0.17 171.0
k[ 17] 180 1.8 14 10.80 50 66.8 85 495 153.8

AR 180 5.0 16 15.61 5 95.73 110.72 50.8 171.8

VI :FoMs = SNDR+10lg( BW/POWER ).

Chinese)

4 Hit

AV T —3GE N X R GO
e 48 BB 32 EB%X#E%% ADC ZER 1 50K B2 Pipe-
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A SAR 2 He bt s SR FH LSB 340 75 7 ik, i ik
5 LR AR AL 5 SR A TIOR3 45 4 5
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