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Abstract: To address the issue that the deep—sea mining vehicle is vulnerable to time—varying external
disturbances caused by some factors such as dynamic ocean currents when operating autonomously on the seabed,
and to further improve the motion control accuracy of deep—sea mining vehicle, an inner and outer loop control
method of deep—sea mining vehicle based on hybrid LQR/He and GPC is proposed. Based on the error kinematic
model of the deep—sea mining vehicle that considers time—varying external disturbances, the LQR and He control

methods are combined to construct the azimuth outer loop controller, which enables the controller to possess both the
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ability of fast tracking of linear optimal control methods and strong robustness. The speed inner loop controller is

constructed by combining the GPC speed controller based on the track’ s longitudinally kinematics model and the

deep—sea mining vehicle’ s dynamic model, so that the controller can ensure real-time solutions while considering

the dynamic characteristics of the deep—sea mining vehicle. The simulation results show that compared with the

commonly used MPC controller in the lateral controller and the traditional PID controller in the longitudinal

controller, the proposed method not only has higher lateral and longitudinal control accuracy, but also shows

stronger robustness to time—varying external disturbances.
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Fig.2 Error kinematic model of the deep—sea mining vehicle
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Fig.3 Simulation model of the deep—sea mining vehicle
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Tab.1 Model parameters of the deep—sea mining vehicle

BT ESH Ky
it /kg 11434
FKexFExE/ (mxmxm ) 2.85%2.4%0.9
IR HEE AR /m 0.375
JEAHT UL /m 1.8

D BT P i A K R S 8N 2 2 iR
P B 2 7% B4 — 1> 58 B R IR {E 40 m Y
IE %M 4R, R S AR R (0,0) , & AR
(125.657 2,0) , WK 4 7R, 27 fAe b4 RO 2
AN S R .
F2 THEARSH

Tab.2 Parameters of variable speed water flow

275 JH 1 XJ7 W KH/ (mes™) Y7 /K (mes™)
[0,7/4] -0.15 2.50
(T/4,3T/4) -0.15 0.15
[3174,T] -2.50 0.15
40
20
g
E 0
=20
—40 I 1 1 I 1
0 20 40 60 80 100 120 140

X/m
B4 KE%E
Fig.4 Reference path
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BS5 AFRE
Fig.5 Reference speed
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Tab.3 Parameters in simulation

SRR JtJE il Ky
AEXPIR A SAE Q R4 LQR/Hoe [100,0;0,45]
AR i E A R R4 LQR/Heo [10,0;0,10]

Hoof il 1E 5 4y R4 LQR/Hoo 5

FABSAS 5 p R4 LQR/He 50

BN, MPC 30
KN, MPC 12
TN, GPC 20
RN, GPC 18
FHTF o GPC 0.45
HEERIERCE ST B GPC 101,
Pl AT AR B A GPC Ix1,,
L B3 25 K PID 12
AT HE2E K, PID 0.1
oI55 K PID 0.01

&1 6 FIEL 7 430 SR To A2 K I AT A8 3 K G A4
T PO O LA, Horh (a) S PR AR BR R 45
(b)) AR 2 | (e) AREE M2 | (d) Ny B R
ERaE I K6 MK 7 h i 0 R8RS H AR S5k
&, 1-0.2-0.3-0 . 4-0fK Rk F /R o AEH K L& 1F T
B4 LQR/He-GPC . MPC-GPC . iE & LQR/Hoe—PID |
MPC-PID [ {5 H45 % 5 W] B, 1-1.2-1.3-1 . 4-1 4K
KA A 78 SR % AT D A 4 o 4 4 LA
e 4~3R TR Jy Te AR AL 55T 15 45 SR 437
PEREIAST) i Y G Sl N V=R S0 3 VT O T 1 e A B A L
RSN AR X B T . A5 DL R R
Pi AT /T anF

T PR AR X I ELAE R T KT 6(a) |
K7 (a) AT LA Y, DORh R 25 2 RR R A M IR B 5%
PEAR , (HAEA AR K I ST kS 2D B BORN TE 5%
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LA B, T AR KO K B AR AR
PR AN TR BN Bl , &l 52 K it
e sh iy AR BE A BT IX 51

55 6(b) (o) ZET(h) () AR T I, ot
JE A B B SRR AT i B TR A LQR/Hoo-GPC 32728 1
K S R B A B/ I S AL S B i) 1 2 W {3
LR A 1R 22 (B HS 553 ) M £ 0.006 696 m 5 0.006
927 rad, P4 I BB 1] 158 2 W (B £ 5 B A 1R 22 0
543514 0.014 45 m 5 0.023 224 rad.
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Fig.6 Simulation results without variable speed water flow
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Fig.7 Simulation results with variable speed water flow
YRR 10 1R 25 504740 H . 3R 4 R 5 AT, TE
YR T B SR KO S A I R A 8 R K SR T e
g P IR A LQR/Hoo—GPC 1 B FOR 1) 158 22 24 i
/N304 0.018 52 m 15 0.029 88 m; F-H R [ 15 25 s
TEAI T HoA = Fh 2 4%, 239712 0.007 m 5 0.012 2 m.
22 6 A1, IR & LOQR/Ho—GPC 7E B A IR i o 75
32 7R K RS R B/ )N R R ) 5% 25 1 i 5T
P 1) 158 22 4 143 500 0.011 36 m 15 0.005 2 m. Al
5. R 6 R AR A =R d g, MPC-GPC A
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35T JHC Al R A o 5 1 P R R 25 R, (A A2 AR
PRK I SE M IS, Fe RO ) 152 2 1 ik 5 1 3 7 1)
TR 2 1 D % i RO ) 15 25 AR T LA o % 5
R4 LQR/Ho-PID 5 MPC-PID (1) F ¥ i [7] i% 22 5
IR R ] 158 25 3 A Ry 0t

PR AT REER AR T 00T N 6(c) (BT 7(c)
AL, JCIE R TE TOAE MUK AR IR R 76 A 78 K

TSR IR A LQR/Hoeo—-GPC 1R £ 15 22 i 2k 2
TSR A 4~FR 6N, FE AR HK LA T
1R & LQR/H o —GPC fie KK 42 £ i3 25 f /N AU R
0.009 142 rad , £ A 28 H KR AT T e KB A 1R 22
W% =5 T MPC—-GPC, 7 0.029 95 rad. 7| 4% = Fh 45 4l 25
Hi, MPC-GPC [RE3E A i 22 il AR 1 LAt o 45
Tl 4 AR -2, HA (R R 422 £ 1% 22 7228 AL B e/ )

R4 TEHRKRFGTHESERSH

Tab.4 Analysis of simulation results without variable speed water flow

Pt #s 26 Al R ] 1R 2% /m FRBHR AR 2 rad TR )28 2 /m - R AR A 1 2 frad
A LQR/Heo-GPC 0.018 52 0.009 142 0.007 0 0.003 7
MPC-GPC 0.038 59 0.013 23 0.020 1 0.004 7
1A LQR/Heo—PID 0.041 61 0.019 24 0.0126 0.003 4
MPC-PID 0.054 47 0.019 07 0.0113 0.003 3

R5 AEHEARZFGETHEERST
Tab.5 Analysis of simulation results with variable speed water flow

PRl as A F KT 15425 /m IR R A3 A1 15 2 /rad SRR T 14 25 /m BB A R 2E rad
R4 LQR/Hoo—-GPC 0.029 88 0.029 95 0.0122 0.009 9
MPC-GPC 0.053 97 0.029 15 0.027 6 0.010 5
1A LQR/Heo—PID 0.081 43 0.063 25 0.023 6 0.0103
MPC~-PID 0.078 19 0.053 74 0.027 4 0.010 6

®6 KRMIEIEMRELE

Tab.6 The error increment caused by disturbances induced by water flow

P as A R iRz T m R AR 251 fit frad SPRIRE S m PR A R 2 e frad
R4 LQR/Heo-GPC 0.011 36 0.020 808 0.005 2 0.006 2
MPC-GPC 0.015 38 0.01592 0.007 5 0.005 8
R4 LQR/Hoo—PID 0.039 82 0.044 01 0.011 0.006 9
MPC-PID 0.023 72 0.034 67 0.016 1 0.007 3
x7 TEXEFELERSHN
Tab.7 Analysis of simulation results in the variable speed zone.
p— A A [ BT i) 1 22 AP B AR A 1R 2 YA s BORE 1) DR 22 WAy s BORBB fr iR 0
WA 34 1 /m WA 1 5 /rad W4 AF 18 5 /m U 34 5t rad
1RA LQR/Hee—GPC 0.006 696 0.006 927 0.014 45 0.023 224
MPC-GPC 0.011 57 0.006 407 0.016 37 0.016 82
R4 LQR/Heo—PID 0.039 51 0.010 683 0.047 03 0.051 92
MPC-PID 0.058 06 0.014 027 0.0199 0.038 25

MR 4 LOR/Heo—PID 5 MPC-PID F i 12 £ 1%
Ze M2 BHR B RIZL, Horp MPC-PID 154 Jo 72 4
IR T 1Y de KR A 2 25 5 P B R A 22
A B 52 A5 3 K B Bl 19 52 e B B B e N TR &
LQR/Heo—-PID.

B Ja X R IR R AT i Rl e (d) 5
7()AHL, PR S, Toie A o AR KR Y

%M F , 14 LQR/He-GPC 5 MPC-GPC Hfigfa & .
PR IR AR RSB T, HER K iR 251
TCAF K 2 R 950 0.003 m/s, 7547 A8 HUK I 5%
47F ¥4 0.007 m/s. 1fij i & LQR/He—PID 5 MPC-
PID 7E JCAZ UK I A5 10 S 4 4% B DRSO S50 3 A
T 7= A BRI, E S5 R 1Y) g /M X8, PR
R il 482 522 WU =42 0.07 m/s RS IR 22
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T AEA AR K S F T, T4 1 5 52 28 UK 5%
me, XELATE[3/4, 1]FE I P AR FRE T 27 0 B i) R
M BRI A R AT LA R B, A LQR/Heodl 1
454 LQR S R4 6 5 Hoofss il WA AN ST 1L A A0 251, il
1397 B A IR il s A AN BAT LM e D0 FE il e e
PRTH Y BRI R L I X AR K I S I AR AR A R
B IR B VR A L B A [ 1 T RE PN B A R AR
MPC-GPC, 4 LQR/Hoo—-GPC 754 Jo28 # /K i 4 14
I R [ S ORG BE RA AR , HLAZ ) AR UK A B0 Y
S P B /N R FHEE T GPC 1 3 P9 A 4 il
i, M TR0 PID FE i 2% , AN ER G % 08 T
T PAT 2 2 R S P I PR 29 IR BE R B 4
BB Ty AR A LA A R 5 0 S0 R 1 25 1 TR
4 LQR/Hoo-PID, IR A LQR/Hoe-GPC BEfE X 2 % ik
JEE TEA T PR T AT R ) TR A, S LA B ) R
538 W PE, JF H B X A8 K R R R R
SEPLT T R BE R A A OB IR S LQR/He 5
GPC 73 WE Ry 7 Ah P48 il e 15 5 1 B 4 ol 2% 119
IR A LQR/H®-GPC, # . F MPC-GPC . i& & LQR/
Hee—PID 5 MPC-PID —Fpfas il 2%, HA& 5 & (1 k90
Tl P DA B, IR AR K P 2 2 A T 5 A6 Rk

5 &g

AR T TR A LOR/Heo 5 GPC B IR HE4E
W2 NN s, %O IR AR DT AN IR i s v
B LQR B35 ) 28 5 Hoo i il 28 AH 45 & IR
LQR/Hoo 2 il 25 , A 250 il S0 130 A [ B 52 30 %68
1B AR PR B RS 5 A R P R R o SR T
JB YN 0] 328 Bh AR HE ST Y GPC 3 s il 4 5 TR U
N DAy RILY S E RS e NP C R DA 7S |
i o A ) A Y R 4P PR . 38 3 Recurdyn/Simulink
KA O BT T B 0 I D YR AT T 36 0E , F B4 SR 3
B < 76 7 (LA IR AR 25 7 T, TR A LQR/Hoeo 5 1l #5 AH
LU I MPC 428 il e EL A 0 v A A ) 2 i RS B2
JEO0 s AR A 5P EL A T 5 1Y) 6 R 5 7R R P 3
P #4807 D, AH TR SR PID FE 25 , 25T GPC Y
R PN A 928 1l AN (R 08 A e PR b BR B S %
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