2 HTH B OR E A (A R R R D) Vol.52,No.7
2025 47 H Journal of Hunan University (Natural Sciences ) Jul.2025

XEHS :1674-2974(2025)07-0132-09 DOI:10.16339/j.cnki.hdxbzkb.2025073

2\ 18] ZF 0B F E X K B 12 B T EHIR M 52 59 52 0

PR BN 1 R ARAE S, B e R R 2, B4R 1
(1. K2R AN PRSP, BEVE VUZE 710064 ;
2. KA R AR SE85 2, PP P54 710064
3. WA S BB IR A7 BR 2N | #7 T Bt/ 310000)

 E BT R RIRHIE R AR B C IR BRI ) N3 3T K55 12 & R M kR B 6 %
", B A = 2 1 000~2 000 m 2R 4 K35 42 & R M A W % BEAT SRR A e B Bk 09 Bk e B 4
M ERE,F R RIEREF A FGN R EH R AR SR I g b iiah b AT
B3Rk, M T R F Cyﬂl’fﬁﬁ%« BB oA B A g FH kA i, 5F 5 Davenport 4 75 49 C=16
B 69 FH 3R B AT ST AR A, B R AR SRR B F R LR IE C 09 PR T R R AL, 2R
CHALT Z B AR RHH ¥4 B ) # k24 v 2 RMSIA 4 4R K .C A 140069 £ R % & fi
# A e 15 A4S BoAn HE ) RMS sk RAE ML C =16 BH 694 X, 551 K 1.5%.14.6% #= 26.3%. A Daven-
port 89 A S AT K %5 E & TR Rom B o4 45 Rk e, 34T H3Rom B R R A AT B, 2
BULE % 40 C E ATt 5

K KB 2 E R I EOR R B AR R 0R s Wk e

FESRS:U441.3 EEREES A

Effect of Longitudinal Decay Coefficient on Buffeting Response

of Long—span Suspension Bridge
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Abstract: In order to study the influence of the simulated pulsating wind field with the traditional exponential
decay coefficient C, on the buffeting response of long—span suspension bridges, frequency and time domain methods
were first applied for buffeting response analysis taking three long—span suspension bridges ranging from 1 000 m to
2 000 m as the background. The results indicate that the buffet response from the time domain method, considering
factors like wind load nonlinearity, is safer. Based on the time domain method, reponsesat the different spanwise
position of the suspension bridge under different C, values was analyzed. The buffet response was compared with the
buffet response when C,=16 recommended by Davenport. The results show that the buffet response of the suspension

bridge does not simply change linearly with the change of C,. The buffet displacement RMS value of the three
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suspension bridges at the mid—span position always remains the largest under different values of C ; When C, is 14,

the maximum values of the vertical, lateral and torsional angular displacement response RMS values of the

suspension bridge are larger than those when C;=16, which are 1.5%, 14.6% and 26.3%, respectively. The results

of the buffeting response analysis of large—span suspension bridges using Davenport’ s recommended values are

dangerous. When performing the most unfavorable buffeting response analysis, it is recommended to select multiple

groups of C_ values for calculation.

Key words: long—span suspension bridge; exponential decay coefficient; time domain method; frequency

domain method ; buffeting response
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Tab.1 Basic parameters of three long—span suspension bridges
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Fig.1 Schematic diagram of the overall elevation of the three

suspension bridges
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Fig.2 Simplified cross—sections of the main beams of the three

suspension bridges
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Fig.3 Aerostatic coefficients of three suspension bridges
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Tab.3 Basic parameters of wind field simulation

for three suspension bridge
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Fig.8 Buffeting response of the main beam at different positions in the span direction under different decay coefficients
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Fig.9 Buffeting response of three suspension bridge main girder mid-span decay coefficients
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