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Abstract: Dental practice procedures are accompanied by the production of large amounts of spattered
particles, and prolonged exposure of healthcare workers to high concentrations of particles may lead to occupational
health problems. To effectively remove spatter particles and reduce the exposure risk of medical staff, this study
proposed a novel vortex exhaust hood with long—distance and high—action benefits. Numerical simulation was used to
analyze the vortex exhaust hood’s flow and particle removal characteristics, comparing it to the traditional top—
suction exhaust hood. The optimal working conditions of the vortex exhaust hood were explored by analyzing the
effects of the velocity ratio of air supply and exhaust, horizontal and vertical air supply angles on the axis velocity,

pressure distribution, and particle removal efficiency of the vortex exhaust hood. Under the condition of ideal airflow
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parameters, the control effect of two kinds of exhaust hoods on particles with different splashing speeds was

analyzed, and the application advantages of the vortex exhaust hood were explored. The results showed that the

vortex hood achieved the best working conditions when the air supply and exhaust velocity ratio was 1 and the angle

of horizontal and vertical air supply was 0°, respectively. The removal efficiency of particulate matter can reach

65.9%, which was better than that of 47% of the top—suction hood. This study confirms the application potential of

the vortex exhaust hood in dental practice, provides a new method for local source control in dental procedures and

has a reference value for the construction of prevention and control measures for the treatment micro—environment.

Key words: dental office ; spatter particle ; air vortex ; exhaust hood ; numerical simulation
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Fig.9 Comparison of axis pressure and velocity in the central

axis of the exhaust hood with different horizontal air supply angles

Case 2-3 3.8 ‘
Case 2-2 g
) i
éﬁ Case 2-1 é
Case 1-4 65.9
T =
Case 1-1 47 HE X
L L I
0 10 20 30 40 50 60 70 80

LRBEI%
B 10 KR KFER A E T H R E R 2% 0 tbdg

Fig.10 Comparison of removal efficiencies of exhaust hoods with

different horizontal air supply angles
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Fig.11 Comparison of pressure and velocity in the central axis

of the exhaust hood with different vertical air supply angles
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different vertical air supply angles
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