w52t oM B OR E A (A R R R D) Vol.52,No.9
2025 4 9 J Journal of Hunan University (Natural Sciences ) Sept. 2025

XEHS :1674-2974(2025)09-0017-11 DOI:10.16339/j.cnki.hdxbzkb.2025083

R TE T R A X E P E /] S8 T 57 17

it U X\ AEAR AL T, FHFR 2
(1. FFF R £ARTRE:Be, B 200092;
2. IRACHRIE B AN A BR A WL VIR B &L 210019)

i B A ARG TR R IF R T AR & AT AR T ARG AR
R A2 W FABZ LM IFER A TR RBETR B2 AT T HEEGMETR . A
Ty E R A AR TR E A LA R, 5T 856 T P AR B E 09 AL FRR &S
FAZL 5 IR R BGE A AR X ARYE R URCR SR B e M A B B RO, AR R TR L O ikt
T HR R H oot 2 5 33k B, AT B) & R s i T 3BURE A Ave BL L R R R AT Y ik kAR
TER@ A THRBRMETEEEAF, ZRETFEREORARNT TEERFA ML 3
FTHME SRR, AL EERESHEALEROY R R . ATEERTEA

AR, R A AR F(JCH)H A THRERMBR L P 4M A EHRE RATRNG SR 45,48

MR ke Tt A

KR AR T R R T T o T RRSA SR ARG B S0k

FE S U448.27 XHkFREARD: A

Reliability Analysis of Wind—induced Overturning for Pylons of Cable—

stayed Bridges during Swivel Construction Process

MA Rujin', LIU Guilin', HU Xiaohong'", GAO Zeyu®
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
2. JSTI Group Co. , Ltd. , Nanjing 210019, China)

Abstract: During the swivel construction process of cable—stayed bridges, the bottom of the pylon is not fully
solidified, causing a risk of overturning and collapse under wind loads. However, existing anti—overturning safety
assessments mostly rely on the safety factor method, and there is limited research based on reliability. Taking a
single—pylon cable—stayed bridge in Wuxi City during its swivel construction process as the research subject, the
limit state equation and the design expression using partial factors for wind—induced overturning of pylons during the
swivel construction process were formulated. According to static aerodynamic force coefficients obtained by virtual
wind tunnel testing, the aerostatic response and buffeting response of the bridge were calculated using finite element
methods, and then the internal force at the bottom of the pylon under all wind direction angles was obtained. The
Monte Carlo method was employed to acquire the anti—overturning reliability index of the pylon, and results showed

a minimum reliability index under the wind in the direction perpendicular to the bridge. A sensitivity analysis was
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conducted, revealing that the structural self-weight and wind speed have the greatest impact on the calculation

results. Based on the target reliability index, the partial factors of structural self-weight and wind load in the anti—

overturning calculation of the pylon were calculated using the checking point method (JC method) , serving as a

reference for the swivel construction design of bridges.

Key words: swivel construction; pylon overturning; Monte Carlo methods; reliability analysis; partial factor;

checking point method
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Fig.3 Diagram of swivel system structure (unit: m)
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Fig.5 Schematic diagram of computational domain
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Tab.1 Numerical results of grid independence check

for the main girder section
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Tab.2 Numerical results of time independence check

for the main girder section
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Fig.6  Aerodynamic force coefficients of the main girder section
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Fig.7 Section of pylon computational model (unit: m)
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Tab.3 Numerical results of grid independence check

for the pylon section
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Tab.4 Numerical results of time independence check

for the pylon section
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Fig.9 Aerodynamic force coefficients of the pylon section

223 M R
FI A FR I0 5% 14 ANSYS % #F 2801t T e R WU
RS B IR AT T 08, E RS H

BEAM4 HTHNL, AR 6 LINK10 $LOCHHL A
07 A A B AR 2 BN 3 5 T, H b 2% R 2R Y 3
PERC R TE 2 5 A AR F SR Ernst 22 3 0HEAT T 4708
Prds 55 2 BRIE 45, I T 1 25 e OO T T
REABRICHIL N 10 fir s, 32 6 45 T e R AU
RS RSB TRk
R5 HRERTEBEMBSH
Tab.5 Material parameters of the bridge finite

element model
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Fig.10 Finite element model of the bridge during the longest
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Tab.7 Calculation results of bridge displacement

under wind loads m
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Fig.11 Bending moment diagram of aerostatic response
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Fig.12 Bending moment diagram of buffeting response
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Tab.8 Distribution of random variables
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