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摘 要：在降雨入渗和交通荷载影响下，路基内部填筑软岩易发生持续的颗粒破碎、迁移

及重新排列，进而引发路基产生不均匀沉降 . 沉降变形是评估路基稳定性与安全性的关键指

标，开展路基沉降预测是预防道路失稳或病害的重要手段 . 然而，传统单一预测模型通常缺乏

良好的普适性与泛化能力，难以适用于不同工况条件下的路基工程 . 因此，收集并分析了18个

公路和铁路软岩填方路基工程的沉降监测数据，总结归纳了波浪型、折线型以及抛物线型等

多种典型沉降趋势 . 在此基础上，基于 Stacked Generalization（SG）集成算法，将三类不同领域

内的预测模型进行组合，构建了适用于预测软岩填方路基沉降的 SG 融合模型 . 改进后的模型

避免了复杂的超参数调整过程，适合直接应用于实际工程 . 并使用了 Blocked K-Fold 训练策

略，提高模型的鲁棒性 . 在实际监测样本与数据匮乏的小样本条件下，将模型预测结果与多个

传统模型进行对比，结果显示，SG融合模型多项误差评价指标显著低于其他模型，针对多个工

程的沉降预测精度最高，具有更高的适用性和鲁棒性 . 研究成果可为软岩填方路基服役性能

评价及工后维护提供理论参考与技术支撑 .
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Abstract：Soft rock within embankments is prone to continuous particle breakage， migration， and 
rearrangement due to rain infiltration and traffic loads， leading to uneven subsidence. subsidence deformation is a 
key indicator of embankment stability and safety， making accurate prediction essential for preventing road defects 
and instability. However， traditional single prediction models often lack generalizability and are not suitable for 
varying conditions in embankment engineering. This study collected and analyzed subsidence data from 18 soft rock 
embankments in highways and railways， which exhibited distinct subsidence patterns， including wave-like， broken 
line， and parabolic trends. Based on these data， using the Stacked Generalization （SG） ensemble algorithm， an SG 
fusion model predicting soft rock embankment subsidence was developed combining the prediction models from three 
different fields. The model avoided the hyperparameter tuning process， allowing for direct application in engineering 
practices. Besides， a Blocked K-Fold training strategy was employed to improve robustness. In comparison with 
traditional models， under conditions of limited monitoring data， the SG fusion model demonstrated significantly 
lower error rates and higher prediction accuracy across various projects. The findings suggest that the SG model is 
more applicable and robust for predicting soft rock embankment subsidence. This research provides theoretical and 
technical support for evaluating the service performance and post-construction maintenance of soft rock 
embankments.
  Key words：embankment engineering；subsidence；integrated algorithms；Stacked Generalization；forecasting

软岩广泛分布于我国的中南、西南等地区，其具

有黏土矿物含量高、遇水易软化崩解、裂隙发育强及

界面效应显著等特性［1］，属于不良路基填料 . 但是大

量交通基础设施修筑于软岩分布区，涉及大量软岩

挖方和路基填筑工程，本着因地制宜、就地取材以及

经济环保的原则，将开挖软岩采用适当方法进行改

良，并通过特定技术措施确保路基的承载能力后［2］，

可以将软岩用于填筑路基 . 然而，工程实践证明，在

降雨入渗和交通荷载影响下，路基内部软岩易发生

持续的颗粒破碎、迁移及重新排列等现象，引发路基

显著沉降［3］. 沉降变形是评估路基稳定性和安全性

的关键指标 . 当路基发生不均匀沉降并超过容许范

围时，可视为沉降病害［4］. 沉降病害轻则造成行车颠

簸、影响行车速度，重则致使路面开裂、路基塌陷，严

重威胁行车安全 . 因此，对关键路段开展早期病害的

准确识别和预判，对于防范道路安全风险、及时发现

和解决问题、减少维护成本至关重要 .
路基沉降是工程和环境等多因素条件交互作用

的结果，然而，实际工程中实时监测大范围的降雨、

气温和行车等因素数据成本较大，工程上常常缺乏

有效的监测数据 . 大部分沉降预测研究直接依据路

基早期的沉降监测资料，采用合理的数据分析手段

反演路基沉降趋势，进而预测路基中、长期沉降［5］. 
传统预测方法有曲线拟合法［6］、灰度理论［7］以及机器

学习［8-12］等，但是传统单一的预测模型常常具有局限

性，导致预测精度较低 . 例如，在小样本与多噪声样

本预测中，机器学习模型可能出现预测结果失真［8］.
为了获取更准确、可靠的预测结果，使单一模型

优势能够得到互补，多种方法组合预测受到广泛关

注［13］. 目前，有学者使用同一方法对不同模型进行融

合预测，如 Su等［14］引用了 S型增长曲线的组合预测

模型，研究基坑开挖诱发地表沉降的发展规律；赵亚

红等［15］通过诱导有序加权调和平均（IOWHA）算子

优化建立泊松-指数曲线加权组合预测模型，根据各

个模型不同时刻预测精度大小赋予其不同的权重 . 
也有学者将 3 类方法交叉结合形成组合模型，如刘

光秀等［16］利用灰色预测模型与冈珀茨（Gomperz）曲

线，根据误差平方和最小为权重分配标准，构建了组

合模型；许明明等［17］利用双曲线法、GM（1，1）和人工

神经网络进行加权组合进行路堤沉降预测 .
与上述研究相比，由于软岩自身的特性、环境条

件、工程地质状况以及监测手段等因素的影响，不同

工程中的软岩填方路基沉降曲线呈现多种变化趋

势，沉降与时间的非线性关系更为复杂，根据短期监

测数据，高精度预测后期沉降变形难度较大 . 此外，

现有预测沉降的组合模型大多基于简单数学加权公

式赋予不同模型权重进行预测，少有使用学习能力

强的机器学习集成方法建立融合模型进行路基沉降
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预测 . 这些简单的组合模型一般只能根据特定工程

组建，由于其假设、原理以及损失函数等存在差异，

仅适用于特定沉降变化规律，对于其他工程的沉降

预测结果可能存在显著差异，模型缺乏良好的普适

性与泛化能力 . 综上所述，目前利用集成算法融合多

元预测模型，同时进行软岩填方路基多种沉降变化

趋势的预测研究较少 .
因此，本研究收集了 18个软岩填方路基工程中

多个路段截面的监测数据，构建了包含 140 个断面

的沉降数据库，并对这些工程变形监测数据进行提

取、分析，总结了 5 种软岩填方路基沉降趋势，并根

据每种沉降趋势特点进行了阶段性划分 . 基于上述

分析，选择 3 种不同样式的多元预测模型作为基学

习器，并采用 Stacked Generalization（SG）集成算法［18］

构建并训练沉降预测模型 . 最后，利用多个传统单一

模型与 SG融合模型预测结果进行对比，综合分析模

型预测精确性、鲁棒性以及多工程适用性 . 本研究旨

在构建具有普适性与泛化性的智能预测模型，为软

岩填方路基稳定性评价及工后维护补强提供参考

依据 .

1   数据收集与预处理

1.1   数据收集

本研究收集了 18 个软岩填方路基工程的工后

沉降数据（表 1），每个工程包括了多个监测段面的沉

降数据，监测数据包括地基的固结沉降以及路堤自

身的压密沉降 . 这些工程遍布中国各地，涵盖了多种

气候条件、软岩填筑种类、施工方法以及防治软岩填

方路基沉降措施 . 监测时长为 1~2年，通过规划布置

沉降监测点，使用监测元器件与沉降板等仪器进行

沉降监测 .受篇幅限制，本文选取了每种沉降趋势代

表性的数据进行分析与后续预测结果展示 .
表1   18个软岩填方路基工程信息及沉降数据

Tab.1   Information and subsidence data of 18 soft rock embankment engineering

序号

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

16
17
18

工程名称

云南墨临高速公路高填方路基

北京-漠河公路

K9+280~K11+120段填筑路堤

武广客运专线株洲某路基

某高速红层软岩路基

六寨-河池高速公路

山西省内某高速

（K16+320~K16+545）
合川-长寿高速

衡桂高速

柞水-小河高速公路

某高速公路

K36+224.2~K36+472.0
树坪隧道路基过渡段

遂渝铁路

红官公路

武广客运

十堰-天水高速公路

六寨-河池高速公路

成武高速公路1标府城枢纽

长沙某高速公路

工程地点

云南省

黑龙江省

湖南省

—

广西壮族自治区

山西省

重庆市

湖南省

陕西省

—

陕西省

四川省

湖北省

广东省

陕西省

广西壮族自治区

甘肃省

湖南省

软岩种类

炭质页岩

粉砂岩

泥质粉砂岩

红层软岩

炭质页岩

泥质软岩

泥质软岩

红砂岩

复合软岩

复合软岩

复合软岩

红层软岩

复合软岩

泥质粉砂岩

变质片麻岩、

千糜岩、片岩

炭质页岩

泥质软岩

红砂岩

控制沉降方法

夹层式边坡，黏土材料包边

砂井排水法

掺20%中粗砂，物理改良

耙压

表层填筑植被土

—

预崩解后碾压密实

预崩解-耙压-碾压，边坡采用填料布处理

—

素土垫层，碎石盲沟，顶层设置双向拉伸土工格栅

—

复合地基、双层土工格栅垫层，上层采用两布一膜以及

中粗砂垫层、顶层使用水泥稳定级配碎石

—

水泥粉煤灰碎石桩加固、软岩与土工格栅分层填筑、路

基边坡采用砂浆砌片石拱型截水骨架并植草防护

强振压实

人工崩解、软岩地基处理、

渐进式摊铺方法、路基“包边处理”

合适的松铺厚度、并反复碾压

强夯

数据

来源

文献［19］
文献［20］
文献［21］
文献［22］
文献［23］
文献［24］
文献［25］
文献［26］
文献［27］
文献［28］
文献［29］
文献［30］
文献［31］
文献［32］

文献［33］

文献［34］
文献［35］
文献［36］
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1.2   数据预处理

实际工程中，由于数据遗漏与测量误差等导致

原始监测数据较少，机器学习模型因难以准确学习

复杂的软岩沉降变化规律而出现欠拟合与过拟合现

象，导致模型不稳定 . 根据已有研究，本文使用了三

次样条插值法扩充软岩沉降数据库［8］. 路堤沉降变

形曲线由多个离散的沉降点连接组成，三次样条插

值函数适用于离散点间的二阶以上多项式的拟合过

程，能较好拟合沉降变化过程 .

2   研究案例沉降趋势分析

在软岩填方路基沉降预测中，软岩种类、路基填

筑形式以及环境条件等影响因素众多，很难界定或

者量化沉降在某一阶段的发展主要是由何种因素导

致 . 因此，本节通过从 18 个工程案例中提取的监测

数据，挖掘沉降与时间之间的规律联系，分析并归纳

出 5种典型的沉降趋势（图 1）. 同时细化每种趋势的

阶段性特点，以评估不同模型的预测精度 . 一方面，

基于这些沉降趋势选取更为适用的单一预测理论进

行融合模型中基学习器的组建，找到符合其变化的

模型表征，再根据前期变化规律确定模型参数建立

融合模型；另一方面，通过对多种沉降趋势的预测，

验证建立的融合模型预测精度与普适性 .
2.1   波浪型沉降趋势

图 1（a）~（c）为典型的波浪型沉降趋势，根据各

阶段特点可进一步细分为 3 类 . 这类沉降趋势普遍

具有以下特点：沉降速率经过了多次循环变化，使曲

线呈波浪形上升，并最终逐渐趋于稳定 . 预测此类趋

势的关键在于模型能否准确建立多次复杂波动与后

期稳定沉降值之间的合理联系与假设，以及沉降速

率变化的时间点与波动前后曲线的变化规律 .
如图 1（a）所示，第Ⅰ类波浪型沉降趋势主要分

为三个阶段 . 第一阶段中，起始沉降速率最大，沉降

随时间基本呈线性变化 . 随时间推移进入第二阶段

后，沉降速率变化趋势由大变小，再由小变大，呈此

类规律多次循环变化，曲线呈现多次波浪形上升，这

一阶段持续时间最长且发生的沉降量最大 . 第三阶

段中，曲线逐渐平稳，单位时间内发生的沉降量在这

一阶段最小 .

这种趋势通常出现在填筑了膨胀性或复合型软

岩的路基工程中，其变形易受气候和环境因素影

响［19，23-25，30-32］. 工程地点通常位于南方降雨量充沛地

区，经历连续高温降雨后，软岩发生多次干湿循环，

强度逐渐降低，岩石发生崩解导致整体沉降量较大，

沉降速率反复循环变化 .

第Ⅱ类波浪型沉降趋势分为三个变化阶段，第

一、第三阶段曲线变化规律与第Ⅰ类相似，但是第二

阶段存在显著差异 . 第二阶段中，沉降曲线一般只发

生一次大幅波动变化，不同于常规路基沉降随时间

推移逐渐增大 . 某一时刻，沉降量相较于前期变化开

始逐渐减少，路基出现回弹现象［19，27，29-31］. 这可能是

                                 （a）第Ⅰ类波浪型                                              （b）第Ⅱ类波浪型                                              （c）第Ⅲ类波浪型

                                                                           （d）折线型                                                           （e）抛物线型

图1   软岩填方路基沉降曲线趋势

Fig.1   Subsidence curve trends of soft rock embankment
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由于软岩在外部应力作用下发生部分弹性变形，随

后恢复部分变形 . 此外，软岩在气候干燥与外部应力

条件下，水分逐渐从岩石颗粒间被挤出，发生固结现

象 .而在降雨后，水分重新渗入岩石颗粒之间发生膨

胀，导致此类现象的发生 .
第Ⅲ类波浪型沉降趋势分为 2 个变化阶段 . 初

期，沉降速率较小；随后，沉降速率呈缓慢增大再减

小的规律循环变化，使曲线形状呈多次反波浪形上

升，此阶段整体沉降量较小 . 进入第二阶段后，曲线

表现出简单的“抛物线”变化，整体沉降主要发生在

这一阶段，变化后期沉降曲线逐渐趋于平缓，直至

水平 .
在此类沉降趋势的工程中［20，28］，路基填筑使用

的软岩多为高应力软岩或复合型软岩，其变形特性

与应力密切相关 . 路基前期所受应力较少，沉降速率

缓慢，变形较小，岩石几乎不产生裂隙 . 但随着上部

荷载的增加超过其承受能力，岩石发生破裂，路基在

短时间内发生大幅度位移 . 工程地点一般位于北方

寒冷地区，冬季气候寒冷干燥，岩土体之间的水分冻

结，沉降速率较小 . 随着夏季来临，雨热同期，路基内

部水分开始融化，加之荷载影响，导致软岩软化，超

过了其承受能力，出现大变形沉降，沉降速率也迅速

增大 .
2.2   折线型沉降趋势

图 1（d）为折线型沉降趋势，其主要包含两个变

化阶段 . 第一阶段沉降速率最大且基本保持不变，曲

线基本呈线性变化，路基沉降主要发生在此阶段 . 当
到达某一临界点后，进入第二阶段，沉降速率迅速变

小，曲线出现明显的弯折点，变化末期沉降逐渐趋于

平缓 . 预测此类趋势的关键在于模型能否准确识别

沉降速率变化的临界点，并准确找到临界变化点前

后的沉降速率变化规律 .
此类趋势通常出现在填筑了高应力软岩或复合

型软岩的工程中，并使用了优良的路基填筑形式与

软岩改良方法［21，25-26，31］. 例如，掺和20%中粗砂物理改

良软岩、铺设全断面复合土工膜与土工格栅等措施，

与常规软岩相比有更好的耐崩解，有效加强了软岩填

方路基承载力，防止软岩与水混合，严格控制路基沉

降，使沉降曲线在弯折点前后基本呈现线性变化 .
2.3   抛物线型沉降趋势

图 1（e）为抛物线型沉降趋势，与传统路基沉降

曲线类似，沉降量主要集中在曲线变化前中期，起始

沉降速率最高，随后沉降速率随时间逐渐减小，沉降

进入平稳期后，曲线逐渐趋于平缓，整体呈抛物线

形状 .
此类趋势通常出现在填筑了复合型软岩并采用

了较好的沉降防治措施的工程中 . 复合型软岩的变

形特性取决于自身软岩类型的组合方式和比例，在

特定的形成历史和环境等因素下，复合型软岩可能

具有较好的稳定性和较小的变形量，使沉降趋势与

普通路基类似［22，29-32］.

3   预测模型

Stacked Generalization（SG）方法又称为堆叠法，

与 Bagging、Boosting统称为三大集成算法，是异源集

成的典型代表，具有模型精度高、可解释性强以及适

用复杂数据等优点，是融合领域较为实用的先驱

方法［18］.
SG 模型包含了基学习器和元学习器两层主体

结构，原始数据作为基学习器的输入，训练得到对应

的预测结果，再将其拼凑成新特征矩阵作为元学习

器的输入，进行二次学习，得到最终预测结果 . 基学

习器中，不同模型在处理数据变化、噪声以及异常值

等方面有各自的优缺点，再通过一个元学习器找到

各基学习器最佳的权重和组合方式进行最终预测 . 
其核心思想是利用不同模型的优势互补，弥补单一

模型的不足，有效避免了不同模型对数据某些特征

产生的偏差，从而降低过拟合风险，提升模型的泛化

能力，从而提升整体预测性能 . 软岩填方路基的沉降

过程复杂、趋势众多，传统模型难以有效捕捉所有变

化特征和趋势，而 Stacking模型通过融合多种模型，

可以更好地适应这种复杂性 .
3.1   基学习器

针对沉降预测，基学习器的输入变量为沉降与

时间的关系，主要任务为找到沉降与时间之间合适

的假设 . 传统基学习器通常全部采用机器学习方

法［18］，但在实际工程中，监测数据往往匮乏并伴随噪

声，过于复杂的模型由于记住了训练集的细节，难以

泛化到新数据 . 并且根据不同数据集，模型存在复杂

的超参数调整过程，极易出现模型输出结果不稳定

等问题，无法充分发挥其性能 .
鉴于此，本文选择了双曲线、DGM（2，1）以及BP

神经网络模型作为基学习器 . 这些模型涵盖了多种

预测模型范式，在不浪费过多计算资源与时间的基

础上，结合各领域内模型的优势，捕捉多种沉降趋势

特征，提高融合模型适用性 . 其中，双曲线模型具备

较高的计算效率，可以有效捕捉沉降随时间的长期
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变化特征，较好预测沉降后期逐渐趋于稳定的非线

性变化［6］. DGM（2，1）模型适用于小样本和不确定性

系统的预测问题，特别在监测数据量少、噪声多以及

处理短期波动时表现出更强的预测能力［7］. BP 神经

网络模型则适合处理大量且波动复杂的沉降数据，

可以更准确地提取沉降量与时间的有效关系特征，

实现高精度预测［10］. 此外，本文 BP 神经网络模型使

用了循环参数寻优与 RProp 优化算法，简化了手动

调参的过程 .
3.1.1   双曲线模型

双曲线模型的基本原理如下［6］：
t - t0
s t - s0

= a + b ( t - t0 ) （1）
式中：st为任意时刻沉降量；s0为起始沉降量；t任意时

刻；t0为起始时刻；a、b分别为截距和斜率 .
3.1.2   DGM（2，1）模型

DGM（2，1）模型是一种二阶线性动态模型，利用

了微分方程做近似拟合，对于趋势变化强烈的数据

模拟预测精度较高，曲线为单调序列的二阶线性动

态曲线，其原理如下［7］.
DGM（2，1）模型为

α(1) x(0) (k ) + ax(0) (k ) = b （2）
其中，α(1) x(0) (k ) = x(0) (k ) - x(0) (k - 1)，k = 2，3，…，n.

设 û = (a，b) T 为参数列，按最小二乘法得到：u =

(BTB )-1BTY，其中，
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（3）

解微分方程得到模型的时间响应序列为

x̂(1) (k + 1) = ( b
a2 - x(0) (1)

a )e-ak + b
a (k + 1) +

( x(0) (1) - b
a ) a + 1

a （4）
其中，x(1) (k ) = ∑

i = 0

k

x(0) ( i )，k = 0，1，…，n .
3.1.3   BP神经网络模型

BP神经网络模型具有较强的非线性映射能力、

泛化能力与容错能力，是现在应用最广泛的神经网

络模型之一 . 如图 2 所示，模型框架由输入层、隐藏

层与输出层组成，相邻前后两层神经元之间为全连

接，每个连接分配权重，一般采用梯度下降搜索技

术［8］. 学习过程由数据向前传播和误差反向传播构

成，两者不断重复进行，使得模型预测值与原始值的

误差达到最小，实现数据预测［8］.

3.2   元学习器

由于基学习器中模型较多且机器学习方法往往

使用了复杂的非线性变化提取特征，SG融合模型容

易产生过拟合 . 而元学习器的职责是融合个体学习

器做出的假设，将多个基学习器的预测结果组合成

新特征变量，最后通过训练模型得到最终预测结

果［17］，相当于寻找“最佳融合规则”. 基于以上原因，

元学习器经常使用可解释性强、较为简单的学习器，

例如决策树、多元线性回归、随机森林等 .
多元线性回归方法可以捕捉多个自变量对因变

量的联合影响，有效增强了模型对复杂数据模式的

适应能力［9］. 这种方法能够将基学习器的输出线性

组合，回归系数即为基学习器的权重分配系数，在训

练中根据不同沉降曲线特征、模型适用性，优化每个

图2   BP神经网络模型原理图

Fig.2   Schematic diagram of the BP neural network model
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基学习器的贡献，分配最合适的权重，提供灵活的模

型组合方案 . 因此，本文元学习器选择多元线性回归

方法，原理如下：

设 y为因变量，x1、x2、x3为自变量，多元线性回归

模型为

yi = ω0 + ω1x1 + ω2x2 + ω3x3 + ε = W Txi （5）
式中：ω0为常数项；ω1、ω2、ω3为回归系数；ε为误差

项 . ω1为 x2、x3固定时，x1每增加一个单位对 y的效应，

即 x1对 y的偏回归系数，x2、x同理 .
模型损失函数为

∑
i = 1

n ( )yi - yi
2

= ∑
i = 1

n

( )yi - Xiω
2

（6）
根据基学习器与元学习器选择，本文 SG融合模

型原理如图3所示 .

3.3   SG融合模型训练过程

传统的训练集和测试集划分方法可能导致两层

学习器使用相同的训练数据，增加过拟合风险，使预

测精度下降 . 在模型中使用时间序列交叉验证方法

中的Blocked K-Fold方法可以有效解决这一问题［37］.
如图 4 所示，本文使用 Blocked 5-Fold 方法，将

前 70% 的监测数据划分为训练集D，后 30% 数据划

分为测试集 S. 将 D按照时间序列平均分成 5 块，

d1~d4为训练数据，V5为验证集 . 依次循环5次，确保D
中每一块数据都参与训练和验证 . 基学习器根据训

练数据得到的Pd1~Pd5 组成元学习器的训练集，根据

测试集得到的Ps1~Ps5 取平均值得到元学习器的测试

集 . 根据训练数据组成数列矩阵对元学习器进行训

练，得到最终预测结果 .

图3   SG融合模型原理图

Fig.3   Schematic diagram of the SG fusion model

图4   Blocked 5-Fold方法原理图

Fig.4   Schematic diagram of the Blocked 5-Fold method
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验证集在训练时单独留出，用于调整模型的超

参数并初步评估模型能力，防止过拟合；测试集则作

为独立的数据集，用于最终评估模型的性能 .
3.4   对比模型

采用双曲线模型、DGM（2，1）模型、BP神经网络

模型、LSTM神经网络模型与 SG融合模型进行对比，

综合评估软岩填方路基沉降预测性能 .
LSTM神经网络模型通过引入遗忘门、输入门与

输出门，有效控制信息的累积和选择性遗忘，解决了

传统循环神经网络在长序列数据训练过程中的梯度

消失和爆炸问题［11］. 因为其擅长学习序列数据中的

复杂关系和长短期依赖，在边坡和水库大坝等变形

预测领域应用广泛，并取得了良好效果［11］，因此本文

增加了LSTM神经网络模型对比评估 SG融合模型预

测效果 . 而由于其复杂的模型结构，基学习器如果叠

加使用，LSTM神经网络模型可能导致融合模型的过

拟合，并且由于其烦琐的超参数调整过程，难以设置

一套超参数适用于多个实际工程，因此基学习器没

有采用此方法 .
文本模型经过多次循环参数寻优（一般为 100

次）与网络搜索等方法，确定了各模型的超参数，详

见表 2. 为了突出融合模型优势，基学习器和单独对

比模型的超参数选择保持一致 . 特别是在 LSTM 神

经网络模型中，滑动时间窗口、隐藏层数节点数等参

数，需要根据不同数据集确定最优参数，以确保高精

度预测 .

4   预测结果分析

4.1   误差评价指标

为了评估模型的预测性能，通常采用误差评价

指标来量化预测值与真实值的差距 . 由于每种评价

指标具有各自优缺点和适用范围，本文采用平均绝

对误差（mean absolute error，MAE）、均方根误差（root 
mean square error，RMSE）以及平均绝对百分比误差

（mean absolute percentage error，MAPE）作为回归任

务中的评价指标 . MAE、RMSE、MAPE 数值越小，表

明模型性能越好，具体计算公式如下［10］：

MAE = ∑
i = 1

n

|| yi - yi
n （7）

RMSE = ∑
i = 1

n ( )yi - yi 2

n （8）

MAPE = 100%
n ∑

i = 1

n |

|

|
||
|
|
||

|

|
||
|
|
| yi - yi
yi

（9）
式中：i为数据集中的样本个数；yi为 i时刻原始数据；

ŷi为 i时刻预测数据 .
4.2   SG模型预测结果

图 5中，SG融合模型对折线型曲线［图 5（d）］与

抛物线型曲线［图 5（e）］预测精度优于波浪型曲线

［图 5（a）~（c）］. 折线型曲线预测结果中，沉降速率变

化的临界点预测时间一致，预测值略微偏小，整体上

模型能准确捕捉曲线变化趋势，预测结果能较好地

收敛 . 抛物线型曲线预测结果中，模型拟合精度较

高，当沉降曲线趋于平缓直至水平时，模型在测试集

上仍有较为出色的预测效果 .
三种波浪型沉降趋势的预测结果接近 . 图 5（a）

中，在第二阶段，预测存在偏差，最大误差在第 108 d
达到 4.15 mm，预测曲线从实际波动的中间位置穿

过 . 其他阶段的预测精度较高，结果能有效收敛 .      
图 5（b）为第Ⅱ类波浪型沉降趋势预测结果，第一阶

段后期预测结果偏大，第 30 d误差最大，为 4.02 mm. 
第二阶段中，回弹现象前期，预测值偏大 . 图5（c）中，

第一阶段后期的波动存在误差，测试集的小幅波动

区域预测值偏大，但整体预测精度较好 . 该组数据在

软岩填方路基沉降末期曲线已经接近水平的情况

下，预测结果仍然能较好地收敛 .
常规机器学习模型的训练集预测精度一般高于

测试集［8-12］. 然而，本文的 SG融合模型表现出相反的

预测结果 . 这是由于传统机器学习模型在训练集上

通常需要设定目标拟合精度，而泛化到测试集上的

表2   模型超参数设置

Tab.2   Hyperparameter settings of the models

模型

双曲线模型

DGM（2，1）模型

BP神经网络

模型

LSTM神经网络

模型

超参数设置

根据不同训练集数据确定a、b

根据不同训练集数据确定a、b

激活函数：sigmoid， 优化算法：RProp， 
epochs=1 000， goal=0.000 01

delay：4~6； hiddennode1：10~60； hiddennode2：
10~120； dropout rate：0.15~0.3，

max epochs：100， initial learning rate：0.01，
learn rate drop period：50， learn rate drop factor：

0.1， mini-batch size：1/10
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能力较弱 . 但是，SG 融合模型中基学习器采用双曲

线与 DGM（2，1）模型，可以有效避免这一问题 . 同
时，根据第 2节研究可知，路基沉降前中期常发生不

规律的复杂非线性变化，后期趋于简单的非线性变

化 . 这些模型根据前期沉降与时间的耦合关系，能更

准确预测后期沉降值 . 这种现象表明，在SG集成算法

中选择曲线拟合法与灰度理论方法对提高沉降预测

精度是有效的，并且避免了一般机器学习模型中出现

的过拟合现象 .
4.3   模型预测结果对比

从图 6与表 3可知，双曲线模型各项误差评价指

标最高，预测结果最差 . 第Ⅲ类波浪型沉降预测最大

误差达到19.03 mm，且后期沉降无法有效收敛 . 预测

过程中，经常因为收敛过快，导致后期预测结果偏小

且误差较大 . 模型难以有效拟合波浪型沉降趋势每

一阶段变化规律 . 这是因为双曲线模型假设沉降随

时间发展符合渐近平滑的双曲线变化规律，对实际

的复杂非线性变化拟合度较差 .
DGM（2，1）模型基于灰度系统理论，采用了差分

进化算法，在噪声和异常值的干扰下具有较强的    
稳定性［7］，因此预测结果优于双曲线模型 . 对于波浪

型曲线预测精度有所提升，但整体预测效果仍然不

理想 . 对于第Ⅱ类波浪型沉降预测最大误差达到

17.98 mm. 这是由于在曲线波动较大且线性关系复

杂时，该模型可能陷入局部最优解而不是全局最优

解，导致预测结果不准确 .
BP神经网络模型预测结果均优于以上模型，但

与 SG融合模型相比，其每组预测结果的MAE、RMSE
与MAPE均显著增加，表明其预测精度低于 SG融合

                                                          （a）第Ⅰ类波浪型                                                                                 （b）第Ⅱ类波浪型

                                                           （c）第Ⅲ类波浪型                                                                                       （d）折线型

        （e）抛物线型

图5   SG融合模型软岩填方路基沉降预测结果

Fig.5   Predicted results of soft rock embankment subsidence using the SG fusion model
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表3   模型测试集预测误差评价指标对比表

Tab.3   Comparison of evaluation metrics for prediction errors in the test sets

沉降趋势

第Ⅰ类波浪型

第Ⅱ类波浪型

第Ⅲ类波浪型

折线型

抛物线型

模 型
SG

双曲线

DGM（2，1）
BP神经网络

LSTM
SG

双曲线

DGM（2，1）
BP神经网络

LSTM
SG

双曲线

DGM（2，1）
BP神经网络

LSTM
SG

双曲线

DGM（2，1）
BP神经网络

LSTM
SG

双曲线

DGM（2，1）
BP神经网络

LSTM

MAE
监测样本

0.530

13.664
4.656
2.500
0.927
0.658

16.403
13.871
2.664
0.631

0.611

18.123
6.440
0.716
1.298
0.006

0.375
0.091
0.041
0.178
0.060

1.160
0.351
0.551
0.140

小样本

1.658

12.789
4.063
5.541
2.071
0.698

15.521
12.898
4.403
1.065
1.054

16.371
6.415
3.157
2.212
—

—

—

—

—

—

—

—

—

—

RMSE
监测样本

0.671

13.707
4.734
3.115
1.346
0.804

16.540
14.137
3.205
0.725

0.755

18.139
7.448
1.052
1.328
0.008

0.380
0.093
0.049
0.180
0.066

1.194
0.361
0.569
0.142

小样本

1.847

12.806
4.160
5.607
2.172
0.870

15.746
13.334
5.497
1.505
1.284

16.403
7.435
3.254
2.299
—

—

—

—

—

—

—

—

—

—

MAPE
监测样本

0.545%

13.878%
4.746%
2.477%
0.835%
0.843%

20.897%
17.623%
3.337%
0.800%

1.059%

31.606%
11.408%
1.263%
2.255%
0.035%

2.245%
0.547%
0.245%
1.067%
0.415%

8.058%
2.439%
3.828%
0.973%

小样本

1.682%

12.949%
4.142%
5.586%
1.745%
0.896%

19.847%
16.416%
5.483%
1.430%
1.815%

28.457%
11.334%
5.470%
3.823%

—

—

—

—

—

—

—

—

—

—

                                        （a）第Ⅰ类波浪型                                           （b）第Ⅱ类波浪型                                          （c）第Ⅲ类波浪型

                                                                                  （d）折线型                                                       （e）抛物线型

图6   原始样本条件下多模型软岩填方路基沉降预测结果对比

Fig.6   Comparison of multi-model predictions for soft rock embankment subsidence under original sample conditions
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模型 .根据图 6可知，BP神经网络模型能初步拟合波

浪型曲线，但在相邻波动区域和沉降速率变化点的

预测上仍然存在较大误差 . 此外，该模型普遍存在测

试集收敛过慢的问题，导致沉降预测值偏大 . 这些误

差结果可能与模型参数优化过程中的梯度下降机制

有关，并且由于损失函数通常存在多个局部最小值，

以及受局部梯度信息的影响，限制了模型的全局优

化能力 .
LSTM 神经网络模型在训练集上能较好拟合每

种趋势的复杂非线性变化，在第Ⅱ类波浪型沉降趋

势的预测结果上优于 SG融合模型，但是其他趋势预

测指标均有所增加，表明模型缺乏较强的稳定性和

普适性 . 第Ⅲ类波浪型沉降预测结果最差 . 模型的

不稳定可能是在训练集上过度拟合了一些噪声或局

部特征，导致在测试集上泛化能力较弱 . 且其存在滑

动时间窗口、隐藏层节点数、丢失率等复杂的超参数

调整过程，不同的数据集需要设定特定的参数组合，

不适用于多个工程的实际应用［11］.
综上可知，单独的模型由于各自的一些缺点与

局限性，仅对某一些沉降趋势的预测效果较好，针对

多个工程的普适性预测效果较差 . 而 SG融合模型可

以有效结合多个模型的预测优势，规避单一模型的

缺点，以达到更高的预测精度，适用于多种软岩沉降

趋势的预测 .
4.4   小样本条件下模型预测结果对比

工程上数据遗漏、噪声等因素经常导致监测数

据有限 . 因此，在数据集匮乏的情况下，模型能否保

持较好的预测精度，是评估其工程适用性的一项重

要依据 . 根据 4.2节使用的实测数据，每组数据从首

个数据点开始，每间隔一个数据点选取一个样本，形

成数量为原始数据集一半的小样本数据集 . 折线型

与抛物线型沉降趋势变化规律较为简单，各模型具

有较好的预测精度，受篇幅限制，仅讨论 3种波浪型

沉降趋势 .
根据表 3可知，在小样本条件预测中，机器学习

模型预测精度普遍出现下降，双曲线和 DGM（2，1）
模型预测精度基本保持稳定 . 数据匮乏对于BP神经

网络模型的影响尤为显著，其预测精度降低幅度远

大于其他对比模型，误差指标 MAE 最高增加了

3.041. 其次对 LSTM模型也有一定影响，其中第Ⅲ类

波浪型曲线预测结果精度下降最大且预测精度最

低，MAPE增加了 1.568%. 相比之下，对 SG融合模型

的影响最小，其中第Ⅰ类波浪型曲线预测结果精度

下降最大，RMSE增加了1.176.
机器学习模型预测精度普遍下降的原因为：当

训练数据量较小时，模型无法有效学习并拟合数据

中的复杂线性关系和变化趋势，从而导致欠拟合 . 此
外，数据偏差和样本选择偏差也可能导致模型仅学

习到训练数据的局部特点，却忽略了整体趋势，从而

导致预测精度降低 . 综上可知，数据匮乏对 SG 融合

模型预测精度的影响较小，该模型的整体预测精度

仍然最高，体现了更强的工程适用性和鲁棒性 .

5   讨 论

在堆叠集成算法中，基学习器的选择需要综合

考虑预测目的、数据特征、数据集类型、模型适用范

围等因素 . 首先，根据模型用途与预测目的，确定所

需的输入和输出参数 . 然后，选择的模型需要有效应

对不同的数据类型，并符合数据集的整体变化规律 . 
最后，根据模型的适用范围、建模难度等综合考虑

调整 .
在软岩填方路基沉降预测中，输入参数为沉降

量随时间的变化，输出参数为沉降量，为单因素回归

问题［5］. 沉降初期多表现为不规律的非线性变化，后

期逐渐趋于稳定，表现为简单的非线性变化［15］. 不同

工程中可能出现的数据类型包括：数据匮乏时的小

样本数据集、长时间监测下的大样本数据集和多噪

声数据集等 . 综上分析，本文基学习器选择了双曲

线、DGM（2，1）以及 BP神经网络模型 . 模型的输入、

输出参数可通过调整以适用于路基沉降预测，且能

有效处理沉降量与时间的关系 . 其中双曲线模型的

假设符合路基沉降后期的变化规律［6］；DGM（2，1）模

型适用于处理小样本和多噪声数据集预测［7］；BP神

经网络模型能有效分析沉降数据在大样本下的复杂

非线性变化［8］. 这种模型组合既有效避免了融合模

型出现过拟合现象，又减少了复杂的超参数调整过

程，在使用较低的计算资源和时间成本的基础上，达

到了良好的预测效果，适用于软岩填方路基工程 .
堆叠集成算法结合多个基学习器和元学习器，

捕捉单个模型可能遗漏的细节，降低单一模型的异

常和误差对最终预测结果的影响，从而提高预测精
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度 . 其层次化结构能够处理多种沉降特征和趋势，减

少单一模型的过拟合风险，增强了模型在复杂和不

确定环境下的鲁棒性和普适性 .
基于堆叠集成算法建立的融合模型设计具有独

特性与灵活性，能够容纳不同类型的基础模型 . 而新

模型的加入只需增加代码并接入程序端口，无须大

规模调整现有结构 . 未来，可以根据不同的应用场景

和条件，补充新的学习器，通过调用不同的模型使其

适用于更多工程场景，完成多种土木工程预测任务 .

6   结 论

1）本研究总结了 18 个软岩填方路基工程案例

中出现的 5种典型沉降趋势，包括 3种波浪型、折线

型以及抛物线型沉降趋势 . 对这些沉降趋势进行阶

段性分析，以用于细化评价模型的预测精度以及各

工程适用性 .
2）采用了双曲线拟合、灰度理论以及机器学习

三种方法构建了 SG融合模型中的基学习器 . 改进的

模型能有效降低机器学习方法常出现的过拟合现

象，在获得良好预测精度的基础上，有效降低了建模

难度并简化了模型的超参数调整过程，更适用于工

程实际 . 相较于对比模型，具有更强的适用性以及更

高的鲁棒性和精确性 .
3）针对工程实践中常见的数据匮乏问题，本研

究分析了各模型在小样本数据集条件下的表现 . 结
果表明，双曲线与 DGM（2，1）模型在数据稀缺情况

下的预测精度相对稳定，机器学习模型普遍存在预

测精度下降的现象，其中 BP 神经网络模型影响最

大，SG融合模型受到的影响最小，且 SG融合模型的

整体预测精度最高 .
4）堆叠集成算法在基学习器的选择上需综合考

虑模型用途、预测目的、数据集类型、模型使用范围

以及建模难度等因素 . 作为一种集成算法，其独特的

优势在于模型的可叠加特性，每种模型运算独立，具

有强大的灵活性与扩展性 . 可以动态增添并选择性

调用多个模型，使已构建的融合模型适用于更多工

程应用场景 .
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