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Abstract: As a unique type of deployable structure, bistable composite material structures have extensive
applications in various fields such as foldable wings, energy harvesters, and adaptive structures. When these
bistable structures are employed in complex environments, the changes in material properties have a significant
impact on their bistable characteristics. By combining theoretical and numerical investigations, this study examines
the impact of material properties on the bistability of composite cylindrical shells. A theoretical model is developed
for antisymmetrically laminated composite cylindrical shells, and analytical expressions for the strain energy of the
shell during deformation are derived. Moreover, the effects of characteristic constants including longitudinal modulus
of elasticity, transverse modulus of elasticity, shear modulus, and Poisson’ s ratio on strain energy, principal
curvatures, and torsional rates are analyzed for the shell structure. The results indicate that variations in the

longitudinal and transverse modulus of elasticity of the material significantly affect the strain energy per unit area and
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the principal curvature of the second stable state in bistable cylindrical shells. Specifically, when the shear modulus

G, decreases from 10 GPa to 2 GPa, the strain energy per unit area is reduced by approximately 72.98%. The

Poisson’s ratio has almost no impact on the performance of the second stable state.

Key words: bistable ; composite material ; cylindrical shell ; material properties ; curvature
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Tab.1 Geometric parameters of composite monolayer shells

L/mm BIC°) R/mm t/mm
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Tab.2 Properties of T700/Epoxy composite monolayer
shells

E,/GPa E,/GPa G,,/GPa v,

108 7.07 5.17 0.31
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Tab.4 The second stability characteristics of

anti-symmetric cylindrical shells with different E, values

E,/GPa u,/(N-mm+mm™) k/mm™
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Tab.5 The second stability characteristics of

anti—-symmetric cylindrical shells with different G, values

G,,/GPa u,,/(N-mm+mm™) k ,/mm™!
10 0.002 002 0.019 614
8 0.001 692 0.022 677
6 0.001 350 0.026 071
4 0.000 968 0.029 855
2 0.000 541 0.034 098
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Tab.6 The second stability characteristics of anti—

symmetric cylindrical shells with different v,, values
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