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Abstract: Demand responsive transit typically operates in chartered or ride—sharing modes. Due to the time—
varying road information, using a single operation mode will reduce the operational efficiency. To maximize the use
of vehicle resources, a flexible scheduling and fleet configuration method under limited bus resources and multiple
operation modes is proposed. First, based on the characteristics of chartered and ride—sharing modes, combined
with the new point—to—point ride—sharing mode and heterogeneous fleet characteristics, the above three modes are
taken into account as a whole. By designing a double—layer time window and aiming to maximize the operational

benefits, a multi-vehicle—type mixed operation scheduling model is constructed. Secondly, the heuristic algorithm
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of adaptive large neighborhood search algorithm is improved. By optimizing neighborhood search operations, the

solution quality is enhanced. Finally, simulation experiments based on real road network data and travel data from

Wuhan City are conducted. The results show that, compared with the chartered and ride—sharing models, when the

fleet size reaches 100 vehicles, the multi-vehicle-type mixed operation model increases the operational revenue by

9% and 7%, improves the order response rates by 10% and 6%, and reduces the average passenger wait time by

30% and 25%, respectively. Overall, the model enhances both the operator’s and passengers’ benefits.

Key words: demand responsive transit; multi-vehicle—type; mixed operation model; point—to—point ride—

sharing; heuristic algorithm
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fift i) Hbm s BN 7, WIBLZEBTR 7, 3% 32 A
AR

ne:

p= exp( T,
Ao T Yk AEE Uk P RAUR IR, BIVHT A
B2 I RE R B T H A R EIEL ) 25 5 25 17 B 2045
PR K HTRLEE T, (W LUAE . T, B3R T

T, =T,c (27)
K TNV EE o R EIR AL

H AT U, BE A 2 AU, BEADLR KA TR B
O AN | B/ 2 g 1 e S [ SO R = B 3
FIBEWT

P B Z) (26)

-7

T, = muo\
K:0 <z <1, B THIGE, FAES IR
)5 2 FF R 1 52 AR 50%..

5, NTEE I 2 A R, A SCRIBAR
DU L B S5 AR A 4 325 2 A L R B m A 20k 5%
e, AR TR R AT SRR, AR Y
BRRHLZ IR/ T O, B

-7
T, < H| Z.| (29)

TERUIER I, 5 AT AT A 2k m UGB AR B
#E, M2 b kAT R

(28)

3 RWWIES S

AT ERXF MVTMO B2 5 DL K ALNS 8k 47 4
Br, B SRR E e A R ok 5 S BT
[Fi) i 55 TAF A A X A [i) 3 55 B9 17 M e i X A 7Y
SR AT HUEAE 53T B 7E Python 3.10 3835 T iz
7, P B HLE B A Intel (R) Core (TM) i7-9750H
CPU@2.60 GHz, 8.0 GB INFF.
31 RWiEE

RT3 B T H AR R R R R AR Sk
T DU T S X8 B ST B b S, AR S PR AT 1) 7
KA, VR 3SR A, 0 S Ak R R X
Ak X, A 58 AT 55 J A T 4 4

P BABC 7 T, 25 R BN R 2R BT S )
TR A SCREH = 42 A0 AR A WF 5 15 A A
FHOGHL & S0 . i 71 7 AR OGS BNk 1 o, 28
FRBGY WIS E A

*1 FHERERFER
Tab.1 Vehicle configuration of driving types
KN FRRAH/GT-min™)  RREEFRAN ERRE

1 0.2 4 1.0
2 0.28 7 1.6
3 0.35 10 2.1

TEVT BT SR T D, X SEBn 1T BRI 647 b B
B F [ — TR E NBOT REAF R R 2 e, P
DL AR 46 of % B0 XE 3T BB B IE R «o,
aell, 1.6,2.4}, a FR/NGRZE B EAC . il o«
Xt RSEGHATIEIE, R 27K

R2 REERSHERE

Tab.2 Parameters setting of passengers request

N GREAME AR AEREL AT AT
TR L . ) . .
(JC+ min™") FEPREF K /min 24T K /min
{4 0.4a 4 7
P 0.34a 3 5
JEPapEeixa 0.3a 5 7

ALNS TR RN 3 s .

®3 ALNSSHIEE
Tab.3 Parameters setting of ALNS

RIS ZHGE L i
Y R R B R AL 0.4
W & 3.0

o i) 5 A 1.0

Fe B IE 2.0
o, 2 Jry e o3 3.0
o, M FT R4 2.0
T, P2 RV 5) 1.0
& PA R R AL 0.3
¢ BHIR 0.99
T 4Lk 0.05
s R 0.01

32 BiEMRES

KT B UEAS SCECHE ) ALNS B34 RE SR FH P b
Xf HE AR

1) NVD (nearest vehicle dispatch) 8 &, B X} F
FRorBCA LT o, PR B BE 2 H ol 40, AR A 4 M
RIATRE A2 TR0 R & B SR, SR A S
BT A TR PR A 5

2) BIS(best insertion search) 5 15 , BB B A 15
I3 VT B2 01 B2 Y R IR R S J AT b B, AR 4l 2
It INFR] S 2B, F 1T AT DL T A, TR R
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W

P14 A 25 80 L 0437 84D 20 9 o £ L —
BRI, 5T R
AV 7 0% , BCEIR B ALNS 53 55 NVD i ! W
BIS 51 76 AN ) 2 BARLASE - LE A b Bl . 81 1 7 S sl yavans
DA th 426 BA AL /N, ALNS 595 R {1 24 = ol s
S S5 5 2 A ML F 488 SR A £y B2 I R e
K, ALNS ik 0K UL 332 01 52, 46 7 146 b ol A
R AR TF . 2 4 B ML I 21 90 I , oK k¥ e - S —
NVD . BIS, 3z # S 4k 77 1 oy 5 42 Tt 19% . 12% o —
VI BRI N 7 R HE T 15% 7% , Fe % ~F- 3 55 - Bl [ (a) b3S
TR 42% 33% , %5 BATRE AT B 24% . 16% , SR . g
% LD ALNS BT SRS M ) e Ve N ]
S 3 3o AWM RT §T SRS B AR AR, O A LT """" 1
FEADLIEL J ) A A B S ) 4 4 e B g oy T
e, S NVID A1 BIS 0 SERLHE L 7 B, it I R R
F) ALNS 5535 B A ROR AR ARV 0TS
3.3 RIS 070 /"
S UE MVTMO BERY | 5% P L 7 455280 3 £ 7 065 e
XF LG - NI
1) {1t 4k 15 43 Hic 52 7412 (optimization—reassign- 0 (b 3T SRR L
ment model, ORM) : & B 50 SR W, 7% 1Ry ol ;.;;}:‘ i gl\;)
R R RIS PR LT 1, — 25 % e L DL AN e ALNS
A b AR T £ N
2) % F5 PF 4 (on-demand ride—sharing, }E or : X ]
ODRS) : KU FE Lk 7 R AR W (8, 3 T 5025 40 o N |
SRS St T A B 0 £ 2 5 T RS
TR AR . 3T T~
i 8 fir ,MVIMO 15 ORM ,ODRS 76 A [ 4= A 270 20 6 30 100
HUBER R AR R ARIEATRS L . 25 72 A BB N B
A FH A EL AT 85 I 7 24 SRR - R
MVTMO §T 85 5 552 S0 , S S0HE B FHc e G
% WA BB K MVIMO S W 5 P | AR N e ALNS
SO AR AT BRI DE A, 14 A 4R TR M 1 . A
A BAHLAE K E] 100 5, 4 B ORM ,ODRS, 1732 § 0201 :A
BAUEE A BIARTE 9% 7% , T B B R4 T+ 10% 6%, & N
¥ 45 R B 1] R BE 30% . 25%, 45 80T 3R T B 0.15F NG ——— -
15% 8%. H L 7 UL, MVTMO B 25 2 Bh BURER K, 4 e el
FRACHHEN 38 BRI 7 BA 10 54 05 R R
BN AR 17 AT O AR | 6 407 8 A et
R B, AR Sy B A TR R4 B7 ki o

B4 PR, BV iz i B RIR S B4 (PR ) Fig.7 Performance analysis of algorithm
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VT LI

A5 1] /min

SRCE

SR ATHH
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75
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6.5
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551

50

= ORM
&~ ODRS o Aa
—e— MVTMO S

AT B BN RIS 2 G A5 ), 2 A MVTMO
17 XF AN [6) B Bt 59 & B PE , XF EE MVTMO 5 ORM |
ODRS ZEA[A] i B ML REFE AR, INFR 4~3R 5 T/ .

x4 TERREMESHT
Tab.4 Adaptability analysis in normal periods

T wEWCER TN CFISERE AT

4.5

20 40 60 80 100
LRI L
(a) BER

—=— ORM

| --a- ODRS T

—e— MVTMO

e
n .}, .'Q

ISR

40 60 80 I(I)O
2 B/ 5
(b) 1T B i 5

20 40 60 80 100

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

P AR/
(o) P55 R7 I 8]

= ORM
r —4— ODRS
—e— MVTMO

20 40 60 80 100
L AR/
()3 #HATHhR
A8 AR ML

Fig.8 Performance analysis of model

Tt R/% Bt [ /min /%

1:1 43 652 94.1 2.7 11.8

MVTMO  1:2 41024 93.7 3.1 11.7
2:1 45975 95.2 2.6 12.0

ORM — 43 875 94.5 2.9 12.4
ODRS  — 39 674 923 3.3 11.4

x5 SIERERENES
Tab.5 Adaptability analysis in peak periods
. Wb B TTRmANL PR S AT
o Ji ot F%  WEmin K%

1:1 36 079 95.9 2.4 9.5

MVTMO 1:2 38 385 97.1 2.5 9.1
2:1 35256 95.2 2.7 9.3

ORM — 35637 95.4 3.0 9.6
ODRS — 37 475 96.3 2.7 9.2

R4 LLE I, 712 8 JE A 7 5 i B,
MVTMO A [R] L] R i A5 25 S AR, 24 il R 201
B, B AL A AR ) A2 0 22 X LRI O, R
SRS AT HIOREG K HIZE E RS T B B R S 3
SERE I [RGB el | 3R R R 7R 2 S I T
BFBLN , BT T SR BN 438, PEE AT 57
S B[] 7 de R G4 T B 0] 45 24 SRBR i, D fC B 2 2%
15, SR SR B i 07 SR DR ] A T B B
AR S T A5, DA e AT 2 7 o0 A 2RI & T
KRR LB R B MVTMO 5 ORM . ODRS #E47 %
Et, ODRS 52 B [a] %  Be 47 i o] 45 R R BRI, 1T B
Wi O 2RI, Iz B ES .ORM RER S5 8 21T .,
{HZ B D PF 42 2R R 55, %F L MVTMO, ORM *F
VAR REIT ) 5 25 40 A T e R K, s s i e e
AT R . AT LA Y, MVTMO 7638 5 09 F 5 i Bt
PERETAL .

MRS ATLLE ), 7Eia 8 muEnt BN B H £
B AL T PF 4R 554550, MVTMO RO PERE AL, i
WS TT L R R R, ELRE R D AE R IE] R T TR
(A AT 0 3 PR A v W ) B T 7 ) 1T PR SR A
R, WEE 2 FIR S TP RSB, AR
— 2 ISF () P 7 B 22 T L PR L A R 1
WA B P, AT DA 22 ) R Ak T P IR g5 R
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2R RAR Y NI/

!

ZERNRA 1B E 11

FELE LB, o MVTMO 5 ORM ,ODRS #:47 %F Hb |
ORM HR A ENMR S, HEWFHREAL, ZmiT
B %, S EGS IR B . ODRS H T W Bt
(FF R AR TPREE , 1T 5 0 84 T, H A2 B4
i DL S AT i Rl BR &, ODRS B9 17 B i i 2 AL F
MVTMO, & F-H) 58RI R K, BT A MVTMO 78
BB i R B PERE TR AL

M2 ,MVTMO 1 F ORM .ODRS, HEA SUE WA
[F B Bt . - 15 T AR I i 5 e 3 2R 3 ) 2 il 55 B =L
SIS I G BA ) R TR L
34 RS

HE, T4 PR RO PR A = AR AT
PR HE MVTMO A5 75 [ 50

W 6 R, i PF 4 A0 S X 8 PR 2 28 4T 1
HaZ2, 1T B N AR X PO 1T SRR A AH AR
ATFE R RE R T 5, DI TR 45 5 DERE Ay, 48 s 2240
VBB, AR R T I, A
FEAE R A - O, T DA 2 sl 3 25 e B 9F 4 5l A
X AP AT 7 2, H i T e 3 SRR A
TR E AT G XU RS .

Fo6 ITHRALERN
Tab.6 Effect of order type ratio

RT FEENERELEZIT

Tab.7 Effect of vehicle type ratio in a heterogeneous fleet

BB IBEWAEOT TN % ST %
2:1:1 79 120 95.5 10.6
1:1:1 79 567 94.8 10.2
1:2:1 78 964 95.7 9.8
1:1:2 78 673 95.8 10.1

AL BB BB KM B, FZHPEEIT AR R
%5, T HLIE B RS E IR L, (RIS T R S K
() [ ) 5 BB A T HE B I, RE T K 1) A TR
T LA MVTMO A AR 418 328 35 0 75 R 3l % o A7 o A
i, F LR R E ¢ RN

F8 RKEITRENZE

Tab.8 Setting of maximum detour time

ITHIEMIL TR /%  FERRFRER 8T HR%
2:1:1 95.2 2.7 10.8
1:1:1 94.8 3.0 10.3
1:2:1 96.1 3.8 9.9
1:1:2 95.7 3.7 10.1

HOWR, W98 5 0 4 DA G RO L A s . n 7
AN, MR S R 11 LI, PR A 38 B i 2h A
N 1B i e R DRI Bl ) | DA N ) [ e = R
BRI, H s B RS BT TR, XA
KA 7 T2 5 AR FIAE ST A O, Tl R AU b
B, 5 K% i ZE R DC 2 i s 8 AR B, 52 )
BARA . e SE bR AR, AT AR S N [
FERT g P g, X 4R AL L AT R AR M
AR A | AN G N A Y IR R O
SOPFAETT RS ), B b B Al LA

e, M PFETT R R A G TS ] ¢ iE AT 53 4T
FFE ¢, KLY A 5

mESFw, 8 B, BBEBEE/N
BF, P ZATHE B AN, TR AT &, (2R
I 850 MVTMO 98207 5me 1, S 300 T B0 i

::;“ RO TR E;iﬁ qﬂ?;_z:
3 77 456 92.8 2.8 0.743
4 78 064 94.2 3.0 0.967
5 79 476 95.8 3.2 1.127
6 79 521 95.7 3.1 1.164
7 78 978 96.1 3.5 1.243
4 4it

BEXH R SRR A SE IR 55 A G 5 7% R A7 Bt
e SRR = i B A A B
Z RN G B SCEL A RS R S
DL T2 i S TR B WU ik as L A, A T AR IESR
fiff 88 R SK A I, e T3 T ALNS SR Bk . 2
Jei 5t 2 FE AR A B AR R KOR R R AT T, 4
SO - B 25 4 BARIUASE 328 9 8 K, etk ) Y9 ALNS
RO B E R T R, 2R RNR A8 B R
XF AL DEGE AR B 7 AR A P R
FETE 4 4 B AR IS 3 100 F5 I, 12 85 0 25 0 T 43 )
T+ 9% 7% , F- Y SRR R T [ 30% 1 25%, 4545
PETHZE B R T F HATIR S . 2 E AR A2 B
RUAT 38 5o 4 M o5 8K, R TG PR R A B, LAY
Xof RE IR o B 5 SR U sl . U 43 AT 38 BH T $2 A% L 1
HRAE S B0 Ak R PR B (B A S0 A5 g 1

SRINT, A SCAR 2 B & B 1T H ok 34 Al HLAE
AL, [R>St R ML 2 1 . A A AR5
A LALEA % 188 BT R AL = ik Es et
REHY H AR R AL A KA S 80 Rl — 2% 8
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