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摘 要：利用 CHEMKIN PRO 气相化学反应动力学分析程序， 对正丁醇详细化学反应动力

学机理的基本反应链进行数值分析， 找出正丁醇燃料在低温反应阶段和高温反应阶段所涉及

的主要反应路径和中间产物 . 基于“半解耦”方法， 以小分子机理 C1/CO/H2作为“内核”， 耦合

正丁醇低温反应和大分子向小分子过渡反应的主要机理， 构建了新的正丁醇化学反应动力学

简化机理 .该机理包含 70种组分和 150个基元反应， 并通过了一维层流火焰速度、激波管等基

础反应器的实验数据验证 . 结果表明， 本文构建的正丁醇化学反应简化机理， 不仅可以准确

计算正丁醇滞燃期的发展， 也能够合理预测层流火焰速度的演变趋势 .
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Study on Reduced Mechanism of Chemical Reaction Kinetic for n-Butanol
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Abstract： Using the gas-phase chemical reaction kinetics software CHEMKIN PRO， the basic reaction chain 
of the detailed chemical reaction kinetics model of n-butanol was numerically analysed， so as to find out the main 
reaction paths and intermediate products involved in the low-temperature and high-temperature reaction phases of 
n-butanol fuel. Based on the semi-decoupling methodology， the small molecule mechanism of C1/CO/H2 was taken 
as the kernel for n-butanol， and coupling the main mechanisms of low-temperature reaction and the transition 
reaction from large molecules to small molecules， a new reduced chemical reaction kinetic model of n-butanol with 
70 species and 150 reactions was developed， which was validated by the tested data of basic reactors， such as the 
one-dimensional laminar flame speed and shock tube. The results show that the developed new reduced mechanism 
of n-butanol can both accurately calculate the ignition delay time， and reasonably predict the evolution trend of the 
laminar flame speed.
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鉴于能源危机以及排放法规日益严格，机动车

行业开始积极寻找新型可再生替代燃料，其中生物

质燃料的开发和利用，受到了学术界和能源市场的

高度关注［1-2］. 以醇类燃料为代表的生物质能源中，

含有 4个碳原子的正丁醇因其生产途径的多样性［3］，
逐渐变成四种同分异构体（正丁醇、仲丁醇、异丁醇

和叔丁醇），成为研究最多、应用最广泛的燃料 .目前，

计算流体动力学（computational fluid dynamics， CFD）
耦合化学反应动力学的先进模拟技术， 是探索生物

含氧燃料缸内燃烧过程最有效的技术手段， 但这样

的计算非常耗时且极易发散， 主要受化学反应机理

规模的限制 .因此， 研究机理简化技术、构建精确且

可靠的正丁醇化学反应简化机理， 是深入理解正丁

醇燃烧过程及将其与CFD模型耦合进行多维数值研

究所面临的重要课题和严峻挑战 .
国内外对丁醇燃烧化学动力学机理的研究已逐

渐开展， Sarathy 等［4］构建了包括正丁醇、异丁醇、仲

丁醇和叔丁醇四种丁醇同分异构的详细动力学模型

（426种组分和 2 336个反应）， 该模型详细描述了四

种不同碳链排列结构的丁醇同分异构体的低温反应

和高温反应路径 . Vranckx等［5］提出并改进了一个反

映正丁醇氧化过程的详细机理， 包括过氧丁基的形

成和各同分异构化反应，并通过了实际发动机高压

环境下的滞燃期试验验证 .在正丁醇简化机理的构

建方面， Feng等［6］运用直接关系图法、反应路径分析

和敏感性分析方法构建了一个包含 75种组分和 285
个基元反应的正丁醇简化机理 . Huang等［7］运用敏感

性分析方法构建了一个柴油-正丁醇混合燃料的简

化动力学模型， 该模型包含 101 种组分和 531 个基

元反应， 并通过了滞燃期、层流火焰速度（laminar 
flame speed， LFS）和中间组分浓度的实验验证 . Choo
等［8］运用考虑误差传递的直接关系图法、同分异构

体归并法构建了一个包含 60种组分和 306个反应的

正丁醇简化机理 . Wang等［9］将正丁醇简化机理与正

庚烷-碳烟前驱物（PAH）机理合并， 构建了正庚烷

-PAH-正丁醇简化机理（76 种组分和 349 个反应）， 
并通过了激波管（shock tube，ST）、定容燃烧弹和发

动机工作环境下的试验值验证 .
在内燃机的实际运行过程中， 层流火焰速度不

仅是验证燃料化学反应动力学模型准确性的重要标

准［10］， 而且综合反映了可燃混合气的性质、燃烧初

始条件以及缸内气体流动的整体效果［11］. 通过回顾

发现， 当前国内外学者提出的正丁醇化学反应动力

学简化模型大部分考虑了滞燃期的演变， 通过层流

火焰速度试验验证的正丁醇简化机理研究虽然也已

逐步开展， 但仍存在机理规模偏大、适用工况范围

有限的问题 . 因此， 本文将使用CHEMKIN PRO分析

正丁醇详细化学反应动力学的反应链机制，结合“半

解耦”方法， 构建一个包含 70 种组分和 150 个反应

的简化机理， 并通过 ST、LFS两种基础反应器的试验

数据验证 .

1   正丁醇化学反应简化机理的构建

1.1   计算程序及模型的选择

本文采用 CHEMKIN PRO 气相化学反应动力学

程序进行仿真研究， 该软件由美国 Sandia国家实验

室开发 . 研究过程中， 使用了 LLNL 实验室 Sarathy
等［4］提出的正丁醇详细化学反应动力学机理， 该机

理包括 2 336个反应和 426种组分 . 该机理全面分析

了分支链醇类和链状醇类特有的反应路径， 已经通

过了激波管、快速压缩机、射流搅拌器和预混层流火

焰速度的试验数据验证 .
正丁醇作为掺混燃料被广泛应用在点燃式汽油

机［12］和压燃式柴油机［13］中， 由于燃料的氧化过程在

不同压力、温度及当量比等边界条件下的反应路径

不尽相同，因此正丁醇简化机理需要在多种工况条

件下分析得出 . 限于文章篇幅， 本文将以正丁醇在

激波管中，初始温度为 832 K， 初始压力为 4.0 MPa， 
当量比为 1.0 的工况条件为例， 讨论正丁醇详细机

理的氧化过程 .
1.2   正丁醇燃烧的化学反应路径分析

1.2.1   低温反应路径

在正丁醇发生反应的低温区域，燃料的消耗主要

开始于正丁醇和氧气、H、OH、HO2等自由基的脱氢反

应 .图 1给出了正丁醇与OH发生脱氢反应的化学反

应速率 .Sarathy等［4］曾指出，在初始温度 800 K，初始

压力6.0 MPa条件下，约有60%的正丁醇与OH和HO2
自由基发生脱氢反应生成C4H8OH-1.Vranckx等［5］也
指出，由于OH的存在，碳位的C—H键能较弱 .通过

分析，正丁醇与各自由基发生脱氢反应的最大平均反

应速率依次为R1550*（代表 Sarathy详细机理中的第  
  1 550 个化学反应）、R1565*、R1543*和 R1560*. 其
中，正丁醇通过 R1550*、R1565*和 R1560*都生成

C4H8OH-1， 而通过R1543*生成C4H8OH-3.
R1543*： nC4H9OH+H<=>C4H8OH-3+H2
R1550*： nC4H9OH+OH<=>C4H8OH-1+H2O
R1560*： nC4H9OH+O2<=>C4H8OH-1+HO2
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R1565*： nC4H9OH+HO2<=>C4H8OH-1+H2O2
正丁醇发生脱氢反应后， 生成的四种丁醇基同

分异构体会继续进行加氧反应， 其反应速率如图 2
所示， 反应速率为负值表示C4H8OH减小 . 在这四个

反应中， R1893*的反应速率最大， 且R1893*的反应

速率峰值位置比其余反应稍有滞后 . 丁醇基四种加

氧产物 C4H8OHO2 各发生同分异构化生成 12 种

C4H7OHOOH的同分异构体， 其中反应速率较大的 4
种如图3所示 .

通过分析C4H7OH-OOH四种同分异构体的主要

消耗反应的化学反应速率可知，R1971*是 C4H7OH-
1OOH-3重要的分解反应，其反应速率最大，直接分

解成C4H7OHO1-3和OH，如图 4所示 .除了发生同分

异构化反应外， C4H8OHO2自身的裂解反应也是正丁

醇低温氧化的重要组成部分，其自身裂解反应速率仅

次于同分异构化反应速率，如图 5 所示 . 可见， 
C4H8OH-2O2通过R1924*裂解成醛类和OH的反应速

率略高于通过R1935*生成烯醇和HO2的反应速率 .
C4H7OH-OOH 的加氧产物 C4H7OHOOH-O2的主

要分解路径如图 6所示 . R2011*和R2016*的反应速

率较高， 主要分解生成氢过氧化酮（C4OHKET）和

OH. 氢过氧化酮继续裂解生成含氧组分和 OH 自由

基（如图7所示）， 其中R2023*的反应速率最高 .
1.2.2   高温反应路径

在高温反应阶段，正丁醇的脱氢反应也是初始

燃料消耗的重要反应 .燃料单分子的裂解反应在高

温反应链中也变得越来越重要 . 图 8 给出了正丁醇

图1   正丁醇与OH自由基的脱氢反应

Fig.1   The dehydrogenation reactions of n-butanol with OH

图2   丁醇基加氧反应

Fig.2   The oxygenation reactions of C4H8OH

图3   C4H8OHO2的同分异构化反应

Fig.3   The isomerization reactions of C4H8OHO2

图4   C4H7OH-1OOH-3的主要消耗反应

Fig.4   The depletion reactions of C4H7OH-1OOH-3

图5   C4H8OHO2的裂解反应

Fig.5   The cracking reactions of C4H8OHO2
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单分子裂解反应速率曲线，由图 8可知，R1534*的反

应速率最高，nC4H9OH裂解生成nC3H7和CH2OH.

正丁醇通过脱氢路径生成的丁醇基，会发生裂

解和异构化反应 . 图 9 给出了丁醇基裂解的主要消

耗反应路径，C4H8OH-1 裂解生成 C2H3OH 和 C2H5的

反应速率最大 . 图 10 给出了丁醇基间的异构化反

应，C4H8OH-4 通过 R1610*生成 pC4H9O 的反应速率

最大，R1612*次之 .

C4H8OH-O2和 C4H7OH-OOH 通过裂解生成的烯

醇， 在高温反应阶段会继续进行单分子裂解和脱氢

反应 . 如图 11所示， R1628*和R1647*是反应速率最

大的两个烯醇脱氢反应， C4H7OH1-4 和 C4H7OH1-1
分别与 OH反应生成烯醇基 .随后，烯醇基会继续进

行裂解反应， R1695*是烯醇基最大的消耗反应， 生
成 C4H6和 OH，如图 12 所示，其中 OH 是高温反应的

主要自由基 . 如图 13 所示，在烯醇的单分子裂解反

应中， R1711*的反应速率最高 .

图11   烯醇的脱氢反应

Fig.11   The dehydrogenation reactions of C4H7OH

图6   C4H7OHOOH-O2的分解反应

Fig.6   The decomposition reactions of C4H7OHOOH-O2

图7   C4OHKET的裂解反应

Fig.7   The cracking reactions of C4OHKET

图9   丁醇基的裂解反应

Fig.9   The cracking reactions of C4H8OH

图10   丁醇基间的异构化反应

Fig.10   The isomerization reactions of C4H8OH

图8   正丁醇单分子的裂解反应

Fig.8   The cracking reactions of n-butanol
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除上述分析的各类反应外， 对比 C4H8OH-1 的

加氧反应 R1893*与裂解反应 R1597*， C4H8OH-1 加

氧生成醛和HO2在正丁醇的高温反应阶段（R1890*）
也具有较大的反应速率， 如图14所示 .
1.2.3   敏感性分析

温度和层流火焰速度是评价燃料燃烧的两个极

其重要的因素 .本节将利用敏感性分析方法，通过改

变初始温度（T）、当量比（φ）来找出正丁醇燃烧过程

中对温度和层流火焰速度影响较大的主要基元反

应 .其中，温度敏感性在激波管模型中计算得到，层

流火焰速度敏感性在一维预混层流火焰速度模型中

计算 .由图 15（a）和 15（b）给出的 nC4H9OH 的温度敏

感性分析结果可知，R1548*、R1550*、R1890* 和

R1893*等大分子反应对温度变化校敏感，个别小分

子反应如 R17*、R18*和 R73*虽然也具有较高的温

度敏感性系数，但影响力不及大分子反应 .
图 16给出了在压力 0.1 MPa、不同初始温度或不

同当量比工况下正丁醇层流火焰速度敏感性系数最

大的前12个基元反应 .与温度敏感性不同，离解的小

分子和自由基团间的反应对层流火焰速度影响最大， 
其中， H+O2<=>O+OH有最高的正敏感系数，提高该

反应速率能够增强系统反应活性，但其敏感性随着温

度的升高而降低，随着当量比的增大而增大 .与此同

时，R8*、R9*和R15*等反应对层流火焰速度的提高起

主要的抑制作用， CH3+H（+M）<=>CH4（+M）有较大的

负敏感性系数， 该反应对预测烷烃类燃料的层流火焰

速度也是至关重要的 . 通过对正丁醇燃烧的敏感性分

析，可以得到对温度和层流火焰速度影响较大的基元

反应，为正丁醇简化模型的构建提供指导 .

图12   烯醇基的裂解反应

Fig.12   The cracking reactions of C4H6OH

图13   烯醇的单分子裂解反应

Fig.13   The cracking reactions of C4H7OH

图14   C4H8OH-1的主要反应路径

Fig.14   The main reactions path of C4H8OH-1

（a）不同初始温度
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1.2.4   机理类别的梳理

通过研究Sarathy等提出的丁醇详细反应机理的

主要反应路径， 概括和总结出正丁醇氧化过程中典

型的高温反应与低温反应的机理类别， 如表 1和表 2

（a）不同初始温度

（b）不同当量比

图16   nC4H9OH的层流火焰速度敏感性分析

Fig.16   The LFS sensitivity analysis of nC4H9OH

（b）不同当量比

图15   nC4H9OH的温度敏感性分析

Fig.15   The temperature sensitivity analysis of nC4H9OH
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所示 . 其中， 低温反应阶段的正丁醇燃料消耗反应

与高温反应类别 2相同， 氢过氧化丁醇基用Q表示， 
丁醇基用R表示 .

1.3   正丁醇简化机理的构建

通过比较不同的机理简化方法， 我们发现 Liu
等［14］给出的“半解耦”方法， 能够有效预测滞燃期及

层流火焰速度的变化趋势，该方法的详细表述可查

阅文献［15］，具体步骤为：首先，选取可靠且详细的

H2、C0~Cn（n取 3、2 或 1）小分子反应机理作为整个

机理的“内核”，用以准确计算燃料的高温阶段化学

反应过程及火焰传播特性；其次，分析简化燃料在低

温阶段的化学反应机理，并耦合已选取的“内核”模

型，以模拟燃料的着火特性；最后，通过调整部分化

学反应常数（指前因子、温度指数和活化能），以便同

时准确预测层流火焰速度、关键组分变化和滞燃期

等重要燃烧指标 .
根据“半解耦”思想，选择Liu模型［14］中C1/CO/H2

小分子机理作为机理的“内核”. 过渡反应选用 Bra⁃
kora等［16］的C2~C3的子模型，该子模型仅包含C3H7、

C3H6、C3H5、C2H4和 C2H3等组分，机理规模小，且已经

被证实具有很好的准确性和预测性 .结合本文对正

丁醇燃料在低温反应和高温反应阶段的主要反应链

及中间产物的分析，调整部分反应的指前因子系数，

本文最终构建了一个新的正丁醇简化动力学模型，

包括 70 种组分和 150 个基元反应 .该模型在低温反

应阶段和高温反应阶段的基本反应链以及所涉及的

主要中间产物如图17所示 .

2   简化机理的验证

2.1   滞燃期的验证

图18给出了初始压力分别为4.0 MPa和8.0 MPa， 
当量比为 1.0下，本文构建的正丁醇简化模型滞燃期

图17   正丁醇简化机理的主要反应路径

Fig.17   The main reaction path of n-butanol reduced mechanism

表2   正丁醇主要低温反应类别

Tab.2   The low temperature reaction categories 
for n-butanol

序号

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

反应类别

丁醇基的加氧反应（R+O2=ROO）
R+ROO=RO+RO
R+HO2=RO+OH

R+CH3O2=RO+CH3O
ROO自由基的异构化反应（ROO=QOOH）

ROO=enol+HO2
ROO+HO2=ROOH+OH

ROO+H2O2=ROOH+HO2
ROO+CH3O2=RO+CH3O+O2

ROO+ROO=RO+RO+O2
ROOH=RO+OH
RO的裂解反应

通过环化作用生成环氧醇

QOOH=enol+HO2
QOOH=烯烃（alkene）/烯醇+羧基（carbonyl）+OH

QOOH+O2=OOQOOH
氢过氧化1-丁基与O2的反应

OOQOOH=氢过氧化酮（ketohydroperoxide）+OH或其他产物

氢过氧化酮裂解为含氧自由基和OH
环氧醇与OH和HO2的反应

表1   正丁醇主要高温反应类别

Tab.1   The high temperature reaction categories 
for n-butanol

序号

1
2
3
4
5
6
7
8
9

10

反应类型

正丁醇（nC4H9OH）单分子燃料的裂解反应

正丁醇（nC4H9OH）分子的脱氢反应

丁醇基的裂解反应

丁醇基的异构化反应

烯醇（Enol， 不饱和醇）的脱氢反应

烯醇酮（Enol-Keto）间的异构化及被H、HO2和甲酸催化异构化

烯醇加氢反应

烯醇基的裂解反应

烯醇单分子裂解反应

1-丁醇基加氧生成醛/酮和HO2
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计算值与试验数据的对比，滞燃期的试验数据分别

取自 Heufer 等［17］和 Vranckx 等［5］的研究 . 由图 18 可

知，本文构建的正丁醇简化机理与 Sarathy详细机理

的滞燃期计算值与试验值取得了良好的一致性 .为
了简化表述， 本文图例中“Exp”表示文献中的试验

值，“Cal”表示化学反应动力学模型的计算值 .

2.2   层流火焰速度的验证

图 19（a）和（b）给出了初始压力为 0.1 MPa，初始

温度分别为 343 K和 423 K时， 本文构建的正丁醇简

化模型对正丁醇/空气层流火焰速度的计算值和试验

值的对比 .层流火焰速度的试验数据分别取自Veloo
等［18］和 Broustail 等［19］的研究 . 与 Sarathy 详细机理相

比，虽然正丁醇简化机理对层流火焰速度的预测与

试验值仍有误差，但也取得了较高的精度 .在初始温

度为 343 K，当量比小于 1.1时，本文构建的正丁醇简

化模型计算的层流火焰速度与试验值误差极小， 预
测精度甚至优于 Sarathy详细机理［4］.因此，本文构建

的正丁醇简化机理可以比较合理地预测层流火焰速

度随初始温度和当量比的变化趋势 .

3   结 论

1） 通过分析正丁醇在高温和低温反应阶段的

关键中间产物及主要反应链， 基于“半解耦”方法， 
通过选择 Liu 模型［14］中 C1/CO/H2 小分子机理作为

“内核”， 结合Brakora等［16］提出的C2~C3子模型作为

过渡机理， 构建了包含 70种组分和 150个反应的正

丁醇化学反应动力学简化机理 .
2） 利用化学反应动力学程序 CHEMKIN PRO， 

对本文构建的正丁醇简化模型进行数值分析， 并与

已发表的实验数据进行比较， 结果表明：本文构建

的正丁醇简化动力学机理能够很好地通过一维层流

火焰速度、激波管的实验验证， 不仅可以合理预测

层流火焰速度的演变趋势， 还能够准确计算正丁醇

滞燃期的发展 .
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