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Study on Reduced Mechanism of Chemical Reaction Kinetic for n—Butanol
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Abstract: Using the gas—phase chemical reaction kinetics software CHEMKIN PRO, the basic reaction chain
of the detailed chemical reaction kinetics model of n—butanol was numerically analysed, so as to find out the main
reaction paths and intermediate products involved in the low—temperature and high—temperature reaction phases of
n-butanol fuel. Based on the semi—decoupling methodology, the small molecule mechanism of C1/CO/H, was taken
as the kernel for n—butanol, and coupling the main mechanisms of low—temperature reaction and the transition
reaction from large molecules to small molecules, a new reduced chemical reaction kinetic model of n—butanol with
70 species and 150 reactions was developed, which was validated by the tested data of basic reactors, such as the
one—dimensional laminar flame speed and shock tube. The results show that the developed new reduced mechanism
of n—butanol can both accurately calculate the ignition delay time, and reasonably predict the evolution trend of the
laminar flame speed.
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R1543*: nC,H,0H+H<=>C,H,0H-3+H,

R1550%: nC,H,0H+OH<=>C,H,0H-1+H,0

R1560*: nC,H,0H+0,<=>C,H,0H-1+HO,
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- —8— R1547%: nC,Hy0H+OH<=>
v 720 C,HgOH-4+H,0

g —o— R1548%: nC,Hs0H+OH<=>
P C,HgOH-3+H,0

) ~4— R1549% nCyH,OH+OH<=>
3 -40 1 C4HgOH-2+H,0

§ —— R1550%: nC,HyOH+OH<=>
X S0 C,HgOH-1+H,0

~60 1 I 1 1
35 3.6 3.7 3.8 3.9 4.0

5 8] /ms
B1 ETHLOH A bk B AR 5
Fig.1 The dehydrogenation reactions of n—butanol with OH

R1565*: nC,H,0H+HO,<=>C,H,0H-1+H,0,
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—=— R1893%: C,HgOH-1+0,<=>C,H,0H-10,

| —e— R1894%: C,HOH-2+0,<=>C,H;0H-20,

—4— R1895%: C,HgOH-3+0,<=>C,H,0H-30,

—— R1896%: C,HyOH—4+0,<=>C,H,0H-40,
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Fig.2 The oxygenation reactions of C,H,OH
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20 | —e— R1927%: C,HgOH-20,<=>C,H,0H-200H-1
—a— R1928%: C,Ha0H-60,<=>C,H,0H-600H-1
—— R1933%: C4HgOH-40,<=>C,H,0H-400H-1
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Fig.3 The isomerization reactions of C,H,OHO,
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—a— R1971%*: C;H;0H-100H-3=>
C4H;0HO1-3+0OH

—o— R1996*: C;H,0H-100H-3+0,<=>
C4H;0H-100H-30,
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Fig.4 The depletion reactions of C,H,OH-100H-3

—a— R1934%*: C,HgOH-10,<=>
C4H,0HI-1+HO,
—e— R1935% C,HOH-20,<=>
i C,H,0H1-1+HO,
~4— R1938%: C4,HgOH-30,<=>
C4H,0H1-4+HO,
9 —e— R1939%: (,HyOH-40,<=>
C4H;0H1-4+HO,
%= R1924%: CHgOH-20,=>C,H;COH+CH,0+0H
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Fig.5 The cracking reactions of C,H,OHO,
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—8—R2011%: C,H,0H-100H-30,<>>
C,OHKET1-3+0H
—e—R2013*: C,H,0H-200H-10,<=>
-6 C,0HKET2-1+OH
~4—R2016*: C,H;0H-300H-10,<=>
C,OHKET3-1+0H
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Fig.6 The decomposition reactions of C,H,OHOOH-O,
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6L T R2025%: C4OHKET2-1=>0H+
HOCHO+C3H5CO
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Fig.7 The cracking reactions of C,OHKET
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Fig.8 The cracking reactions of n—butanol

T T3 Ao B S AR A B TR, A R

il RN ST AR AL SN . B9 44 M T T I S 2 A 1

FE RN %A%, C,H,OH-1 24 fi# £ il C,H,0H 1 C,H, i

W R KL 10 4 T T R [R]85 R Ak R

N, C,H,OH-4 18 i R1610%* 4 i, pC,H,0 [ J 1 4
KL R1612%IK 2.

o
=

<

Tcr

E
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Fig.9 The cracking reactions of C,H,OH
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Fig.10 The isomerization reactions of C,H,OH
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—e— R1674%: C,H,0H1-140,<=>
-I5r C,HgOH1-13+HO,
b R1628%: C,H,0H1-4+OH<=>
-20 - C4HgOH1-32+H,0
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Fig.11 The dehydrogenation reactions of C,H,OH
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Fig.12 The cracking reactions of C,H,OH
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[ —a— RI710% C,H,0H1-4<=>C,H;1-4+OH
T -15 F—e— RITI1% CH0H1-4<=>CyHy+pCH,0H
« —a— R1715% C,H,0H1-1<=>C,Hs+CH,CHO
S 20 - —— RI716% CH;0H1-1<=>C,H,1-1+OH
2
X 30 -
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Fig.13  The cracking reactions of C,H,0H

B bR o3 B 0 £ 28 O Ak, % HE C,HOH-1 1Y
JnAA s R1893* 55 4 fig [z i R1597*, C,H,OH-1 il
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R1928%: C,HgOH-30,<=>C,H,0H-300H~1
R1922%: C,HgOH-10,<=>C,H,0H-300H-3
R1893%: C,HgOH-1+0,<=>C,H,0H-10,
R1890%: C,HgOH-1+0,<=>nC;H,CHO+H,0
R1565%: nC,HyOH+HO,<=>C,HgOH-1+H,0,
R1550%: nC,HyOH+HO<=>C,HgOH-1+H,0
R1548%: nC,HgOH+OH<=>C,HOH-3+H,0
R1547%: nC,HyOH+OH<=>C,HCOH-4+H,0
R1185%: nC3H;CHO+HO,<=>nC;H,CO+H,0,
R73%: CH,0+0H<=>HCO+H,0

R18%: H,0,(+M)<=>20H(+M)

R17%: 2HO,<=>H,0,+0,

L 1 1
-0.8 -06 -04 -02

230 | —8— R1597% C,Hy0H+C,Hs<=>C,HgOH-1

—o— RI1890%: C,HgOH-1+0,<=>nC;H,CHO+
HO,

—d— R1893%: C,HgOH-1+0,<=>C,HgOH-10,

40 F

)'S_(F:Z,@i%i/(l0_3 mnl-s_]-(’m_z)

=50 +

—60 1 1 1 1
3.5 3.6 3.7 3.8 3.9 4.0

] ) /ms
K14 CHOH-18 &R w312
Fig.14 The main reactions path of C,H,OH-1
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R1928%: C,HOH-30,<=>C,H,0H-300H-1
R1922%: C,HgOH-10,<=>C,H,0H-300H-3
R1893*: C,HOH-1+0,<=>C,H,0H-10,
R1890%: C,HgOH-140,<=>nC;H,CHO+H,0 o=1.15
R1565%: nC,Hy0H+HO,<=>C,HOH-1+H,0,
R1550%: nC,Hy0H+HO<=>C,HgOH-1+H,0
R1548%: nC,Hy0H+OH<=>C,HOH-3+H,0
R1547%: nC,Hy0H+OH<=>C, H,COH-4+H,0
R1185%: nCyH,CHO+HO,<=>nC3H,CO+H,0,
R73%: CH,040H<=>HCO+H,0 A 7=832K. P=4.0MPa
R18% Hy0,(+M)<=>20H(+M)
R17% 2HO,<=>H,0,+0,

-0.6 -0.4 —O.I2 0.0 OI.2 0.4 0.6
FRAEACABUBAE A BT (0 120 %0
OYENCIES 424
B 15 nC,H,OH & 3% B R 547
Fig.15 The temperature sensitivity analysis of nC,H,OH

R134%: CHy+OH(+M)<=>CH,(s)+H,0(+M) a0 K
R128%: CHy+H(+M)<=>CH,(+M) T=400 K
R36%: HCO+OH<=>CO+H,0 I =353 K

R33*: HCO+H<=>CO+H,
R31#: HCO+M<=>H+CO+M
R28*: CO+OH<=>CO,+H
R15%: HO,+OH<=>H,+0,
R12%: HO,+H<=>20H

RO9*: H+0,(+M)<=>HO,(+M)
R8*: H+OH+M<=>H,0+M
R3%*: OH+H,<=>H+H,0
R1*: H+0,<=>0+0H

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
BB 2 W (7 K0
(a) AR AR IR L

R134%: CHy+OH(+M)<=>CH,(s)+H,0(+M)
R128%: CHy+H(+M)<=>CH,(+M)
R36*: HCO+OH<=>CO+H,0
R33*: HCO+H<=>CO+H,
R31*: HCO+M<=>H+CO+M
R28*: CO+OH<=>CO,+H
R15% HO,+0H<=>H,+0,
R12*: HO,+H<=>20H
RY%: H+0,(+M)<=>HO,(+M)
R8*: H+OH+M<=>H,0+M
R3*: OH+H,y<=>H+H,0
RI% H40,<250+0H R T )

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

BB 23 BT (5T 4 K0
CYENCIEF 484
B 16 nC,HOH & B i KW i AR 7
Fig.16 The LFS sensitivity analysis of nC,H,OH

1.2.4 HLIR K R 0G4 22 TN BEAT , MEHE LRSS O T I AR AL o R v i
AL BF5T Sarathy S48 H A T B0 SO0 HLEE Y YA i RSO0, SRR SOV B HLERZE ), gk 1 gk 2
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Tab.1 The high temperature reaction categories

for n—butanol
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Tab.2 The low temperature reaction categories
for n—butanol
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Fig.17 The main reaction path of n—butanol reduced mechanism

2 ELHERIGIE

2.1 THPARARYLEIE
I8 25 T #14R 1 153514 4.0 MPa F18.0 MPa,
MR 1.0 R, A SCH Y 1F T P fay A A 15 v R 10



512 3

TR 5 a0 B 1 X L, AR 0 ) 1l 0 840
B A Heufer 2" Fl Vyanckx 55 (0 57 . /1 & 18 1T
AR SCH B IE T B AL HLEE S Sarathy TRARHLIE
AR B S R (B T R4 — 2
T FRIE , A ST b “Exp” 27 SCHk #9305
{EL, “ Cal "R Ak~ IOV 8l g~ R A 3R

100

B [xp. —Heufer et al. 4.0 MPa

O Exp. —Vranckx et al. 8.0 MPa
Cal.—Detailed. Sarathy et al. 4.0 MPa
10 k=== Cal.—Detailed. Sarathy et al. 8.0 MPa
A Cal.-Reduced. 4.0 MPa
% Cal.-Reduced. 8.0 MPa

o
£
® 1
£

0.1 9=1.0
X0
g
0.()1 1 1 1

0.8 0.9 110 Il.l 1.2 1.3 1.4
VIRJ%/10°.KY)
B 18 ET B ML T oG B E
Fig.18 The verification of ignition delay of n—butanol in ST

22 EimMNIEEERIE

L 19(a) Fl(b) 45 i T #1465 9724 0.1 MPa, ¥R
LI 55900 343 K AN 423 K, AR SCHY A I T )
PAHIXS IE T /28 SR A Y SR A
BB LU . 2R K kB 90 B 23 1 B E Veloo
S8R Broustail 25 5T . 15 Sarathy T 240 AIL LA
L, BAR IE T B a7 AR BL PR X J2 9 ke 8 B 1) T
RIS A A 5222  (HAL AR T B RS B 7E R0 R TR
JE R 343 K, i Fo/NTF LI AR SCR (4 1E T ]
ACABE RS THAE (14 )2 0 KO R B 5 IR (R 25 A/, Tl
DUKE B2 EC 2 0 T Sarathy TEAHHLIE. PRt , A SO
() IE T P a7 AR FLIE AT DA b 4 38 b 000 )22 3 Kk i
J3E Bt ) J 1 R > i L ) AR A R

60

P=0.1 MPa

50 R 2 A
40

30

20

® Exp. -Velooetal. 343 K
Cal.-Detailed. Sarathy et al. 343 K

JE KT E /(em-s")

10 F A Cal.-Reduced. 343 K
O 1 1 1 1
0.6 0.8 1.0 1.2 1.4 1.6
S a4
(a)T=343 K

XU 1E T R SON; 8l 0“7 TR AU WL A A AR 5 45
60
7=423 K
50 - AC A- o 6 6
T A R
S 40t P LA
g 8 o :
o sof
= o
:*;2 O Exp. -Broustail et al. 0.3 MPa
2 20T - - - Cal.=Detailed. Sarathy et al. 0.3 MPa
@ A Cal.-Reduced. 0.3 MPa
10+ ® [Exp. —Broustail et al. 1.0 MPa
Cal.-Detailed. Sarathy et al. 1.0 MPa
0 Cal.-Reduced. 1.0 MPa
1 1 1 1 1 1 1 1

(()).6 07 08 09 10 11 12 13 14 15
)44
(b)T=423 K
B 19 EiR KR SE L R I A
Fig.19 The LFS comparison between simulation results

and experimental values

3 &it

1) 38 35 43 B 1 T B A v RN e B N B Bt 1
SR b R P R R N A, TR R Ok
i 1 BB Liu B AL dh C1/COMH2 /N4y T HLERAE
“INAZ”, 454 Brakora 254 HY (1Y C2~C3 FAEHIAE Ry
S EHLEE, AT 40 70 Fig 43 RN 150 4N S R IE
TR B Bl )2 fRi AL L

2) FI k22 O 8 1 2% ## JF CHEMKIN PRO,
X AR SCRE Y TE T B A SR A T B E A, IF S
O & 2 SCI R AT A, S5 SRR AR ety
() I T B ST Ak o0 1 A AL ET BE A5 AR G b i 1ok — 248 2 0
KM O A B SER B IE , AN AT LA BRI
JE TR KR B AR Fa e, AR RS ERR T IE T B
BRI A .

[1] SHENAVAEIZARE T, KHOSHSIMA A, ZARENEZHAD B.
Development of surfactant—free microemulsion hybrid biofuels
employing halophytic salicornia oil/ethanol and oxygenated
additives| J ]. Fuel, 2021, 292: 120249.

[2] EBADIAN M, VAN DYK S, MCMILLAN J D, et al. Biofuels
policies that have encouraged their production and use: an
international perspective[ J ]. Energy Policy, 2020, 147: 111906.

[3] LIUKM,LLYT, YANG J, et al. Comprehensive study of key
operating parameters on combustion characteristics of butanol—
gasoline blends in a high speed SI engine [J]. Applied Energy,
2018, 212: 13-32.

[4] SARATHY S M, VRANCKX S, YASUNAGA K, et al. A



46

PN QR 2]

2025 4F

(5]

[10]

[11]

[12]

comprehensive chemical kinetic combustion model for the four
butanol isomers [J]. Combustion and Flame, 2012, 159 (6) :
2028-2055.

VRANCKX S, HEUFER K A, LEE C, et al. Role of peroxy
chemistry in the high—pressure ignition of n—butanol : experiments
and detailed kinetic modelling[J]. Combustion and Flame, 2011,
158(8): 1444-1455.

FENG H Q,ZHANG J,LIU D J, et al. Development of a reduced
n-butanol mechanism with combined reduction methods [J].
Fuel, 2017, 187: 403-416.

HUANG H Z, ZHU ] Z, ZHU Z ], et al. Development and
validation of a new reduced diesel-n—butanol blends mechanism
for engine applications [J]. Energy Conversion and Management,
2017, 149: 553-563.

CHOO E J C, CHENG X W, SCRIBANO G, et al. Development
and validation of a n-butanol reduced chemical kinetic
mechanism under engine relevant conditions [J]. International
Journal of Chemical Kinetics, 2021, 53(12): 1285-1305.
WANG H,DENEYS REITZ R,YAO M F, et al. Development of an
n-heptane—n—butanol-PAH mechanism and its application for
combustion and soot prediction [J]. Combustion and Flame,
2013, 160(3): 504-519.

LIU K M, FU J Q, DENG B L, et al. The influences of pressure
and temperature on laminar flame propagations of n—butanol, iso—
octane and their blends[ ] ]. Energy, 2014, 73: 703-715.

RANZI E, FRASSOLDATI A, GRANA R, et al. Hierarchical and
comparative kinetic modeling of laminar flame speeds of
hydrocarbon and oxygenated fuels [J]. Progress in Energy and
Combustion Science, 2012, 38(4): 468-501.

LIU Z B,ZHEN X D,GENG J, et al. Effects of injection timing on

mixture formation, combustion, and emission characteristics in a

n-butanol direct injection spark ignition engine [J]. Energy,

[13]

[14]

[15]

[16]

[17]

(18]

[19]

2024, 295: 131059.

CALY, JIAM, LI'Y, et al. Multiple combustion modes switching
to realize full-load efficient energy conversion of n—butanol/diesel
dual direct injection (DI?) engine [J]. Energy Conversion and
Management, 2023, 278: 116722.

LIU Y D, JIA M, XIE M Z, et al. Improvement on a skeletal
chemical kinetic model of iso—octane for internal combustion
engine by using a practical methodology [J]. Fuel, 2013, 103:
884-891.

UL, SRINGE , vk . 150l PR fa 4k (b2 SN 8l ) 2F kiR
IR BT S () ). 0 R 2 e CH AR B A , 2022, 49(6)
37-44.

LIU K M, EJ Q, YANG J, et al. Study on Reduced Chemical
Reaction Kinetic Mechanism of Primary Reference Fuel for
Gasoline [J]. Journal of Hunan University (Natural Sciences) ,
2022,49(6) : 37-44. (in Chinese)
BRAKORA J L, RA Y, REITZ R D, et al. Development and
validation of a reduced reaction mechanism for biodiesel-fueled
engine simulations [J] . SAE International Journal of Fuels and
Lubricants,2009,1(1):675-702. .

HEUFER K A, FERNANDES R X, OLIVIER H, et al. Shock
tube investigations of ignition delays of n—butanol at elevated
pressures between 770 and 1 250 K [J]. Proceedings of the
Combustion Institute, 2011, 33(1): 359-366.

VELOO P S, WANG Y L, EGOLFOPOULOS F N, et al. A
comparative experimental and computational study of methanol,
ethanol, and n—butanol flames[ ] |. Combustion and Flame, 2010,
157(10) : 1989-2004.

BROUSTAIL G, HALTER F, SEERS P, et al. Experimental
determination of laminar burning velocity for butanol/iso—octane
and ethanol/iso—octane blends for different initial pressures [J].

Fuel, 2013, 106: 310-317.



