+高级检索
时序无关和鲁棒性增强的遥感影像变化检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


A Chronological Invariant and Robust Enhancement Method for Change Detection in Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在遥感影像变化检测中,基于深度学习的方法大多采用孪生网络结构.然而,大量实验发现,此类方法会出现改变输入图像的顺序后性能严重下降的现象,其中ChangeFormer方法在LEVIR-CD数据集的交并比指标下降了79.86%,表明模型的时序鲁棒性不足,严重影响变化检测模型的实用性.对此,提出了一种结合时序对齐与跨层特征混合的变化检测方法CINet(chronologic invariant network),在特征提取时设计时序对齐模块,通过对特征图进行空间混合和时序重建,在特征层面减少双分支的时序差异.然后设计了跨层特征混合模块,使用全尺度连接和差异引导来充分利用双分支中每一层级的特征图,提高在不同时序下的检测能力.最后,在LEVIR-CD数据集的实验结果显示,CINet的召回率和交并比分别达到了90.63%、84.13%,相较于ChangeFormer分别提高了1.83个百分点、1.65个百分点.在多个数据集上的实验结果也表明,即使在改变输入顺序后,所提方法仍能取得良好的变化检测结果,显示出优于其他方法的检测性能和更强的时序鲁棒性.

    Abstract:

    Deep learning-based methods, particularly those employing Siamese network structure, are widely used in remote sensing image change detection. However, extensive experiments reveal that these methods often suffer significant performance degradation when the order of input images is altered. Notably, the ChangeFormer method exhibits a 79.86% drop in the intersection over the union (IoU) metric on the LEVIR-CD dataset, indicating a lack of chronological robustness that severely impacts the practical utility of the change detection model. To address this issue, this article proposes a novel change detection method called chronologic invariant network (CINet), which integrates chronological alignment module and cross-layer feature mixing module. During the feature extraction phase, a chronological alignment module is introduced. This module employs spatially cross-mix feature maps and chronologic reconstruction to reduce temporal information discrepancies between the two branches at the feature level. Additionally, a cross-layer feature mixing module is designed to blend deep and shallow features using a full-scale connection and difference-guided approach, effectively utilizing feature information from every layer of both branches to improve change detection accuracy under varying input sequences. Experimental results on the LEVIR-CD dataset show that CINet achieves a recall of 90.63% and an IoU of 84.13%, which represent improvements of 1.83 percentage points and 1.65 percentage points over ChangeFormer, respectively. Results from multiple datasets further demonstrate that the proposed method consistently maintains high change detection performance and robust chronological invariance, even when the order of input images is altered, outperforming other methods.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

杨景玉 ?,张文驰 ,党建武 ,王锋 ,火久元 .时序无关和鲁棒性增强的遥感影像变化检测方法[J].湖南大学学报:自然科学版,2025,52(8):33~43

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-29
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭