+高级检索
基于GADF和CWT并行输入模型的滚动轴承智能诊断研究
作者:

Research on Intelligent Diagnosis of Rolling Bearings Based on Parallel Input Model of GADF and CWT
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    滚动轴承运行工况的变化与噪声干扰等随机不确定性因素会导致网络特征提取不完整,从而无法捕捉故障突变等局部奇异信息. 针对上述问题,提出一种并行二维深度可分离残差神经网络(parallel two-dimensional depthwise separable residual neural network, P2D-DSResNet)模型,通过格拉姆角分场(Gramian angular difference field,GADF)和连续小波变换(continuous wavelet transform,CWT)将振动信号转变为二维时频图像,保留了完整的时频域信息. 采用深度可分离卷积替代残差模块中的普通卷积,增强特征学习能力,从而使模型具有更强的特征提取能力,以解决在高噪声和变工况环境中故障诊断效果不佳的问题. 采用滚动轴承故障模拟试验台获取的数据对其进行试验分析并与其他卷积神经网络方法对比,结果表明,优化后的算法模型具有良好的泛化性和准确率.

    Abstract:

    Due to random uncertainty factors, such as the change in operating conditions of rolling bearings and noise interference, it is easy to lead to incomplete network feature extraction and the inability to capture local singular information of fault mutations. A parallel two-dimensional depthwise separable residual neural network (P2D-DSResNet) is proposed in this paper to address the aforementioned issues. By using Gramian angular difference field (GADF) and continuous wavelet transform (CWT), one-dimensional vibration signals can be transformed into two-dimensional time frequency images while preserving the complete time-frequency domain information. The P2D-DSResNet uses depthwise separable convolution instead of ordinary convolution in residual modules, which enhances feature learning ability and improves the model’s feature extraction capability for better fault diagnosis in high noise and varying operating conditions. The bearing data obtained from a fault simulation testbed are used for experimentation and analysis. A comparative analysis with other convolutional neural network methods demonstrates that the optimized algorithm model has good generalization ability and high fault recognition accuracy.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

张小丽 ?,和飞翔 ,梁旺 ,李敏 ,王保建 .基于GADF和CWT并行输入模型的滚动轴承智能诊断研究[J].湖南大学学报:自然科学版,2025,52(2):98~108

复制
历史
  • 在线发布日期: 2025-03-04
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭