+高级检索
结合注意力机制和Gabor滤波器的人脸伪造检测
作者:

Face Forgery Detection Combining Attention Mechanism and Gabor Filter
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对假人脸和真实人脸纹理的显著差异,提出了一种基于纹理特征的人脸伪造检测模型.首先,以ResNet18为主干网络,结合通道注意力机制和残差网络解决网络退化的问题,并建立通道之间的联系以提取深层特征;其次,运用自相关矩阵来量化图像块之间的相关性,捕捉图像中不同尺度的特征以获取全局统计特征;最后,通过在自相关模块的每个池化层后引入Gabor滤波器,提取图像的局部纹理特征,全面描述图像内容,并采用Softmax函数对输入图像进行层次化分类.实验结果表明,对于不同的图像增强方法编辑的假图像,该方法有效提升了检测准确率.

    Abstract:

    In view of the significant texture difference between fake faces and real faces, this paper proposes a face forgery detection model based on texture features. Firstly, ResNet18 is used as the backbone network, and combined with the channel attention mechanism and residual network to solve the problem of network degradation, in order to establish the connection between channels to extract deep features. Secondly, the autocorrelation matrix is used to quantify the correlation between image blocks, and the features of different scales in the image are captured to obtain global statistical features. Finally, the Gabor filter is introduced after each pooling layer of the autocorrelation module to extract the local texture features of the image, providing a comprehensive description of the image content, and the Softmax function is used to perform hierarchical classification. Experimental results show that this method effectively improves the detection accuracy for fake images edited by different image enhancement methods.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

罗维薇 ,岳田田 ,雷琴 ?.结合注意力机制和Gabor滤波器的人脸伪造检测[J].湖南大学学报:自然科学版,2025,52(4):27~33

复制
历史
  • 在线发布日期: 2025-04-28
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭