+高级检索
顾及小尺度目标特征重建的全局语义分割模型
作者:

Global Semantic Segmentation Model Considering Small-scale Target Feature Reconstruction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    针对复杂背景下航空遥感图像中多类别小尺度目标特征的理解困难和特征边界分割不清晰的问题,本研究构建了一种新型的分割模型,该模型通过综合主干网络特征并进行特征分类与重构来提升分割效果.模型以Swin-Transformer作为基础编码结构,利用其强大的全局语义信息捕捉能力进行特征抽取.进一步,本研究创新性地提出了信息聚合重构模块(IGRM)和通道区分重构模块(CRRM),这两种结构能够依据信息量对抽取的特征进行分类和重构,以此细化了对小尺度目标特征的处理.模型结合了上采样与下采样的特征连接,并将重构特征与编码器特征融合,形成多尺度特征聚合块,进而输出精确的分割结果.在处理复杂背景下的多目标场景时,本模型能够对细小尺度目标特征进行精确重构,生成高分辨率的分割图像,显著提升了分割的准确度.在ISPRS Potsdam和ISPRS Vaihingen数据集上,本模型取得了平均交并比(mIoU)分别为87.15%和82.93%、整体准确率(OA)分别为91.53%和91.4%的优异表现.为评估模型对多类别小尺度目标特征提取的泛化性能,本文还进行了针对复杂背景下小车类别的对比实验,在UAVid数据集上的mIoU达到了67.86%.

    Abstract:

    To solve the problems of insufficient understanding and fuzzy feature boundary segmentation of multi-target categories small-scale feature semantic information in aerial remote sensing images in complex background, this paper designs a segmentation model that integrates the features of the backbone network information and classifies and reconstructs the features to improve the segmentation effect. The model takes Swin-Transformer as the coding structure and utilizes its ability to understand global semantic information for feature extraction. The segmentation of small-scale target features is refined by the designed information grouping reconstruction convolution (IGRM) and channel classification reconstruction convolution (CRRM), which classify and reconstruct the extracted features by the amount of information. Finally, by integrating the up-sampling and down-sampling connections, the reconstructed features are fused with the features extracted by the encoder to form a multi-scale feature aggregation block to output the segmentation results. The refined reconstruction of small-scale target features is realized in multi-target scenarios with complex backgrounds, and high-quality segmentation maps are generated to improve the segmentation accuracy. Experimental results on the ISPRS Potsdam and ISPRS Vaihingen datasets show that the average intersection and merger ratio (mIoU) is 87.15% and 82.93%, respectively, and the overall accuracy (OA) is 91.53% and 91.4%, respectively. To verify the generalization ability of the model for small-scale target feature extraction in multi-target categories, this paper also designs a comparative experiment for the category of carts in complex backgrounds. The experimental results show that the mIoU on the UAVid dataset reaches 67.86%.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

吴小所 ?,乔煜栋 ,贺成龙 ,刘小明 ,闫浩文 .顾及小尺度目标特征重建的全局语义分割模型[J].湖南大学学报:自然科学版,2025,52(4):44~56

复制
历史
  • 在线发布日期: 2025-04-28
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭