+高级检索
基于改进粒子滤波的半挂汽车列车状态估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


State Estimation of Tractor Semi-trailer Based on Improved Particle Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对半挂汽车列车行驶过程中部分关键动力学状态不可测以及传感器测量值受发动机振动噪声等随机因素干扰的问题,提出了一种改进的粒子滤波方法对半挂汽车列车行驶过程中的动力学状态进行实时估计.首先建立了半挂汽车列车的17自由度动力学模型,通过将粒子滤波原理和自适应遗传算法结合增强粒子多样性, 设计了分段提议分布函数, 采用系统重采样方法抑制粒子贫化现象,实现对半挂汽车列车的纵向速度、侧向速度、横摆角速度等动力学状态的实时精确估计.搭建硬件在环仿真试验平台对算法进行不同工况下的试验验证. 试验结果表明:与无迹粒子滤波算法相比,提出的改进粒子滤波算法在理想环境和随机噪声环境下均能够实现整车的状态估计,具有较高的估计精度.

    Abstract:

    Aiming at the problem that some key dynamical states of tractor semi-trailer cannot be measured and the values of sensors are interfered by random factors such as engine vibration noise, an improved particle filter is proposed to estimate the dynamical states of the driving tractor semi-trailer in real-time. This paper establishes a 17 degrees of freedom dynamical model of tractor semi-trailer first. By combining the particle filter principle and the adaptive genetic algorithm to enhance the particle diversity, the piecewise proposal distribution function is designed, and the systematic resampling method is used to suppress the particle regression. The in-time and accurate estimation of longitudinal speed, lateral speed, yaw rate, and other states of tractor semi-trailer was realized. A hardware-in-the-loop (HIL) simulation test platform was built to verify the algorithm under different conditions. The testing results show that compared with the unscented particle filter algorithm, the improved particle filter algorithm proposed in this paper can realize the state estimation of the whole vehicle under both ideal and random noise environments, and has higher estimation accuracy.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

赵晋海 ,武秀恒 ,宋正河 ?,孙浩.基于改进粒子滤波的半挂汽车列车状态估计[J].湖南大学学报:自然科学版,2025,52(6):14~23

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭