+高级检索
基于YOLOv8n改进的夜间行车目标检测算法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Research on Night-time Driving Object Detection Algorithm Based on Improved YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    夜间驾驶时, 光线条件不佳, 目标容易被遮蔽, 这使得检测算法难以精确地识别目标的轮廓和形状. 此外, 车辆行驶中拍摄到的物体易产生模糊感, 这导致目标特征提取困难. 为解决上述问题, 提出了一种基于YOLOv8n改进的夜间行车目标检测算法. 首先, 将DCN模型引入C2f模块, 改进成DCN_CSP2模块, 并替换主干网络中的C2f模块, 从而更加精准地捕捉目标物体的形状和边缘信息, 提升特征提取能力,降低模型计算力需求. 然后, 在颈部网络中针对性地引入深度可分离卷积(depthwise separable convolution,DWConv)模块, 在保持模型性能的同时, 减少模型参数量, 从而提高模型计算效率,使模型轻量化.最后, 针对原始非极大值抑制(non-maximum suppression,NMS)算法在目标部分遮挡时可能导致重要目标丢失的问题,引入基于候选检测框与基准框重叠部分大小的衰减函数,使重要目标更有可能被保留下来,并参与后续的NMS算法过程, 从而提高模型的检测性能.实验结果表明,相较于YOLOv8n,所提算法在rmsw_5k_night数据集上的mAP@50提高了6.2个百分点, mAP@50:95提高了5.7个百分点,降低了计算力需求, 减少了模型参数量, 实现了模型轻量化与高性能的平衡.该算法有效地提高了对夜间目标的检测能力, 为其移植到终端设备中打下了坚实的基础.

    Abstract:

    The light condition of driving at night is poor, and the target is easily blocked, which makes it difficult for the detection algorithm to accurately determine the edges and shapes of targets. In addition, in the process of vehicle moving, fuzzy sense is easily generated on the captured objects, resulting in the difficulty of feature extraction of targets. To address these issues, this paper proposes an improved object detection algorithm for night-time driving based on YOLOv8n. Firstly, the DCN model is introduced into the C2f module and improved into the DCN_CSP2 module, which is used to replace the C2f module in the Backbone. This enhances the algorithm to capture the shape and edge information of target objects more accurately, improves the feature extraction capability, and reduces the computational burden. Secondly, the DWConv module is specifically introduced into the Neck to reduce the number of model parameters while maintaining computational performance, and improve the computational efficiency and achieve the lightweight of the model. Additionally, to address the issue of the original NMS algorithm potentially causing the loss of important targets when they are partially obscured, a decay function based on the overlap size between the candidate detection boxes and the reference box is introduced. This makes important targets more likely to be retained and participate in the subsequent NMS process, thereby improving the detection performance of the model. Analysis results show that compared with YOLOv8n, the improved algorithms achieve a 6.2% increase in mAP@50 and a 5.7% increase in mAP@50:95 on the rmsw_5k_night dataset, and reduce the computational burden and the number of model parameters, achieving a balance between model lightweight and high performance. The improved algorithm effectively enhances the detection capability for night-time targets, and it lays a solid foundation for the algorithm to be applied to the terminal devices.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

吕辉 ,黄杰 ,张明容 ?,上官文斌 .基于YOLOv8n改进的夜间行车目标检测算法研究[J].湖南大学学报:自然科学版,2025,52(6):59~68

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭