+高级检索
融合逻辑判断机制的CNN-GRU换道意图识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Recognition Method of Lane Change Intention Based on CNN-GRU Integrated with Logic Judgment Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了提升驾驶辅助系统的可靠性, 进而确保行车安全, 准确地识别车辆的换道意图是一个关键策略. 为此提出一种基于卷积神经网络(convolutional neural network, CNN)和门控循环单元(gated recurrent unit, GRU)并融合逻辑判断机制的换道意图识别方法, 能够对车辆换道意图进行有效识别. 首先, 基于驾驶模拟器记录了20名志愿者的驾驶行为信息, 涵盖了左换道、右换道和直行3类数据, 用于构建换道意图样本集. 其次, 采用车辆行驶特征和驾驶员行为数据构建CNN-GRU模型, 通过CNN层提取特征并作为GRU层的输入. 最后, 在意图识别网络中融合了逻辑判断层, 通过设置概率阈值的方式, 解决换道意图在时间序列上的前后依赖问题. 为了验证所提方法的有效性, 与融合了CNN的长短期记忆(long short-term memory, LSTM)网络和GRU进行对比分析. 研究结果显示, 提出的模型在识别左换道、右换道和直行行为时, 准确率分别达到了98.5%、96.7%和95.2%, 相比其他模型展现出更高的识别精度.

    Abstract:

    Accurately identifying the lane change intention of vehicles is a key strategy for improving the reliability of driving assistance systems and ensuring road safety. A novel method that combines convolutional neural network (CNN) and gated recurrent unit (GRU), integrated with a logic judgment mechanism, was proposed to effectively recognize the lane change intentions of vehicles. First, test data from twenty volunteers were recorded using a driving simulator including three categories: left lane change, right lane change, and straight driving. The data was used to construct a sample set of lane change intention. Secondly, a CNN-GRU model was built using vehicle driving characteristics and driver behavior data, with the CNN layer being employed to extract features as input to the GRU layer. Finally, a logic judgment layer was integrated into the intention recognition network to address the temporal dependencies of lane change intentions by setting probability thresholds. To validate the validity of the method in this study, the model was compared and analyzed with a CNN that was integrated with long short-term memory (LSTM) and GRU. The results show that the proposed model achieved recognition accuracies of 98.5% for left lane changes, 96.7% for right lane changes, and 95.2% for straight driving, demonstrating higher accuracy compared with other models.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

任立海 ,康鈺泽 ,刘煜 ,蒋成约 ?.融合逻辑判断机制的CNN-GRU换道意图识别方法[J].湖南大学学报:自然科学版,2025,52(6):69~77

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭