+高级检索
一种基于证据理论的主动学习可靠性分析方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


An Active Learning Reliability Analysis Method Based on Evidence Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对具有单个失效模式、认知不确定性和“黑箱”模型特点的可靠性分析问题,提出了一种基于证据理论的主动学习可靠性分析方法,能够高效高精度地求解结构的可信度和似真度. 通过证据理论对认知不确定性变量进行处理,抽取初始训练样本构建初始Kriging模型,将优化方法与主动学习过程相结合,实现在整个输入变量空间中搜索最佳训练样本,利用最佳训练样本对Kriging模型进行优化,通过优化后的Kriging模型代替功能函数,对未知点进行预测,以实现结构的可信度和似真度计算. 该方法将优化方法与主动学习过程相结合,降低了传统方法搜索训练样本时对候选样本位置的约束,能够搜索到对Kriging模型优化效果更好的训练样本,提升了Kriging模型构建的效率和成功率. 数值算例证明了该方法具有良好的计算效果,并将其应用于车辆正面碰撞的可靠性分析.

    Abstract:

    For the reliability analysis problem characterized by a single failure mode, cognitive uncertainty, and “black-box” models, an active learning reliability analysis method based on evidence theory is proposed. This method efficiently and accurately determines the credibility and verisimilitude of structures. It handles cognitive uncertain variables using evidence theory, initiates initial training sample construction for a Kriging model, and combines optimization methods with active learning to search for optimal training samples across the entire input variable space. This approach refines the Kriging model chronically with optimal training samples, replacing the functional function with the Kriging model to predict unknown points for credibility and verisimilitude calculation of the structure. By integrating optimization methods with active learning, the method relaxes constraints on candidate sample locations during traditional training sample search, thereby identifying training samples that better enhance the Kriging model’s correction effects and improve the efficiency and success rate of Kriging model construction. Numerical examples demonstrate the method’s computational effectiveness and its application to the reliability analysis of vehicle frontal collisions.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

张哲 ?,宝文礼 ,姚中洋.一种基于证据理论的主动学习可靠性分析方法[J].湖南大学学报:自然科学版,2025,52(6):120~133

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭