+高级检索
面向登高作业的视觉与气压传感器融合高程测量方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


An Elevation Measurement Method Based on Fusion of Vision and Barometric Sensors for Aerial Work
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了在作业现场便捷、准确地测量登高作业人员距离地面的高度,提出了一种融合大气压力测高和视觉检测的高程测量方法. 建立YOLOX深度网络来检测现场作业图像中的登高作业人员,确定作业人员在图像中的高度位置. 利用大气压力传感器对作业人员登高过程中短期的实际高度变化值进行检测. 根据大气压力测高结果以及视觉检测结果,利用支持向量回归(SVR)建立并更新作业人员的图像位置与实际高程之间的回归模型,最终由回归模型获得高准确度的测高结果. 在实际的登高作业实验中,将所提方法与大气压力传感器直接测高及大气压力传感器比对法测高进行对比,该方法的平均绝对测高误差和均方根测高误差均低于0.2 m,优于其他对比方法. 所提方法通过视觉与大气压力传感器的融合,既克服了大气压力传感器测高漂移严重、长时间使用时精度低的问题,也避免了视觉检测中的人工标定过程,测高精度能够满足登高作业现场的人员测高需求,且便于实施,不会增加作业人员的工作负担,对于登高作业安全监护具有明显的实用性.

    Abstract:

    An elevation measurement method via the fusion of vision and barometric sensors is proposed to achieve convenient and accurate measurement of the elevations of operators during aerial work. A YOLOX deep neural network is constructed to detect the aerial operators and their positions in the pictures of the aerial work site. The changes of real altitude in the relatively short period of climbing are measured via a barometric sensor. Using the barometric elevation measurement and vision detection results, the support vector regression (SVR) is applied to construct and update the regressive model between the image position and the actual elevation of the operator, and the high accuracy elevation measurement results are obtained through the regressive model. In real-world aerial work experiments, the proposed method is compared with the direction elevation measurement using a single barometric sensor and the differential elevation measurement by two barometric sensors. The measurement errors, in the mean absolute error as well as in the root-mean squares-error, of the proposed method are all lower than 0.2 m, and are superior to the two rival methods. The performances of the proposed methods are achieved by fusing the vision detection and the barometric elevation measurement, which overcomes the serious signal shifting and degradation of measurement accuracy of the barometric sensors, and also avoids the laborious calibration procedure of the vision detection system. The proposed method’s elevation measurement accuracy satisfies the requirement on the operator in aerial work, and it is easy to apply in work sites without putting extra burdens on the operators, making the method a practical choice for operator safeguarding in aerial work.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

赵旭 ,罕天玺 ,唐立军 ,杨迎春 ?.面向登高作业的视觉与气压传感器融合高程测量方法[J].湖南大学学报:自然科学版,2025,52(6):155~165

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭