+高级检索
基于改进XGBoost算法硅橡胶击穿场强预测与分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Prediction and Analysis of Silicone Rubber Breakdown Field Strength Based on Improved XGBoost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    硅橡胶材料因其出色的绝缘性能,常用作高压条件下的绝缘材料,其击穿场强是重要的电气性能指标,与材料配方之间存在复杂的非线性关系. 基于此, 提出了一种基于遗传算法(genetic algorithm,GA)优化的极端梯度提升(extreme gradient boosting,XGBoost)算法的高效评价模型. 该模型将GA和XGBoost相结合,以温度、色母相对含量、Al(OH)3微粉直径、Al(OH)3相对含量和厚度作为输入,建立了优化后的XGBoost模型,对击穿场强进行预测,GA算法在XGBoost模型训练过程中自动选择最优参数. 采用皮尔逊相关系数对其影响因素进行分析可知,厚度和温度是影响击穿场强的关键因素,而色母相对含量、Al(OH)3微粉直径和相对含量的影响相对较小. 将常用的回归模型与所提出模型的评价指标进行对比分析,该模型决定系数可达0.953,均方根误差和平均绝对误差仅为0.361 kV/mm和0.168. 结果表明:GA-XGBoost模型能够较准确地预测该材料的击穿场强,可为研究硅橡胶材料性能和优化材料配方提供参考依据.

    Abstract:

    Silicone rubber materials are commonly used as insulation materials under high-pressure conditions due to their excellent insulation properties. The breakdown field strength is an important electrical performance index, and there is a complex nonlinear relationship between the breakdown field strength and the material formula. Based on this, an efficient evaluation model based on genetic algorithm (GA) optimized extreme gradient boosting (XGBoost) algorithm is proposed. The model combines GA and XGBoost, and uses temperature, relative content of masterbatch, diameter of Al(OH)3 micropowder, relative content of Al(OH)3 and thickness as inputs to establish an improved XGBoost model to predict the breakdown field strength. The GA algorithm automatically selects the optimal parameters during the training process of the XGBoost model. The Pearson correlation coefficient is used to analyze the influencing factors. It can be seen that the thickness and temperature are the key factors affecting the breakdown field strength, while the influence of the masterbatch content, the diameter and relative content of Al(OH)3 micropowder is relatively small. The evaluation index of the commonly used regression model is compared with the proposed model. The coefficient of determination of the model can reach 0.953, and the root-mean-square error and mean absolute error are only 0.361 kV/mm and 0.168, respectively. The results show that the GA-XGBoost model can accurately predict the breakdown fieid strength of the material, which can provide a reference for studying the properties of silicone rubber materials and optimizing the material formulation.

    参考文献
    相似文献
    引证文献
文章指标
  • PDF下载次数:
  • HTML阅读次数:
  • 摘要点击次数:
  • 引用次数:
引用本文

毕茂强 ?,张世宇 ,张文轩 ,江天炎 ,陈曦 ,郭元吉 .基于改进XGBoost算法硅橡胶击穿场强预测与分析[J].湖南大学学报:自然科学版,2025,52(6):178~186

复制
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
作者稿件一经被我刊录用,如无特别声明,即视作同意授予我刊论文整体的全部复制传播的权利,包括但不限于复制权、发行权、信息网络传播权、广播权、表演权、翻译权、汇编权、改编权等著作使用权转让给我刊,我刊有权根据工作需要,允许合作的数据库、新媒体平台及其他数字平台进行数字传播和国际传播等。特此声明。
关闭